![]() |
January 12, 2021 | Volume 17 Issue 02 |
Manufacturing Center
Product Spotlight
Modern Applications News
Metalworking Ideas For
Today's Job Shops
Tooling and Production
Strategies for large
metalworking plants
ProtoShield sheets from Tech-Etch are depth-etched with a checkerboard pattern for folding, so they can be easily formed into many diverse configurations. In the product-development stage, fully functional shields can be created in minutes with just a pair of scissors and a straight edge for folding. Offered in two sizes: standard (.25-in. squares) and metric (5-mm squares). Both versions are solderable and corrosion resistant due to nickel silver material. Shield prototypes can be directly soldered to the board, or shield clips can be used for easy mounting. Samples available.
Learn more.
Keysight Technologies has developed an optically isolated differential probing family dedicated to enhancing efficiency and performance testing of fast-switching devices such as wide-bandgap GaN and SiC semiconductors. Validation of floating half-bridge and full-bridge architectures commonly used in power conversion, motor drives, and inverters requires measurement of small differential signals riding on high common-mode voltages. This measurement can be challenging due to voltage source fluctuations relative to ground, noise interference, and safety concerns.
Learn more.
EXAIR's ATEX Cabinet Cooler® Systems deliver a powerful and affordable solution for keeping electrical enclosures cool in hazardous ATEX classified areas -- and they're now available in durable aluminum construction. Engineered for use in Zones 2 and 22, these coolers are UL tested, CE compliant, and meet stringent ATEX standards for purged and pressurized enclosures. With cooling capacities up to 5,600 Btu/Hr., ATEX Cabinet Coolers are ideal for preventing overheating in electrical cabinets. EXAIR offers a comprehensive lineup of systems.
Learn more.
Automation-Direct's Practical Guide to Program-mable Logic Controllers Handbook has been improved with tons of new need-to-know info, making it a more comprehensive guide to the world of PLCs. Besides covering the basics of PLC history, PLC hardware, and PLC software, this guide takes you deeper into the ever-changing world of PLC communication, the importance of feedback loops, cyber security, and many other areas that are a must-know for any PLC novice or seasoned automation professional.
Get this great resource today.
Get your customers to feel the difference your products make. TDK has released a development starter kit for fast haptics prototyping. It gives mechanical designers and engineers first impressions of the haptic feedback using PowerHap piezo actuators, shows how the mechanical integration works, and provides a reference design. Applications include automotive, displays and tablets, household appliances, vending machines, game controllers, industrial equipment, and medical devices.
Learn more.
Need precision fastening with ESD protection at the smallest torque levels? Mountz has you covered. The new FG Mini ESD Preset Torque Screwdriver is built for low-torque, high-precision tasks. Its compact design makes it ideal for tight spaces and small fasteners, while delivering the same reliable control and ESD protection users have come to expect from Mountz. Two models available: FG25z (3 to 25 ozf.in, 2 to 17.7 cN-m) and FG50z (20 to 50 ozf.in, 14.1 to 35.3 cN-m).
Learn more.
Automation-Direct has added Laumas precision-engineered load cells, transmitters, and accessories that deliver reliable performance in industrial weighing and force measurement applications. The FCAL series high-precision bending beam load cells are ideal for low- to mid-capacity systems. CTL series load cells are designed for both tension and compression, with excellent linearity. The CBL series low-profile compression load cells are perfect for space-limited applications. Laumas load cell transmitters are available too for precise monitoring and control. Very good pricing.
Learn more.
Improper grounding can create problems in data logging, data acquisition, and measurement and control systems. One of the most common problems is known as ground loop feedback. Experts at CAS DataLoggers run through five ways to eliminate this problem.
Read the full article.
According to Automation-Direct, "Braking resistors don't actually provide braking directly -- rather, they allow a drive to stop a loaded motor faster." Why is this important? Protect your AC or DC drive system from regenerative voltage that can create an over-voltage fault on the drive -- especially with high inertial loads or rapid deceleration.
View the video.
Static electricity isn't just a nuisance; it's a serious threat to manufacturing efficiency, product integrity, and workplace safety. Unchecked static can lead to costly downtime, product defects, material jams, and even hazardous shocks to employees. If static is interfering with your processes, EXAIR's upgraded Model 7905 Digital Static Meter offers an essential first step in identifying and eliminating the problem. With just the press of a button, this easy-to-use, handheld device pinpoints the highest voltage areas in your facility, helping you diagnose static issues before they become a problem.
Learn more.
Modulating a laser beam's intensity distribution optimizes energy delivery to the process zone, resulting in better cutting speed, cut edge quality, and cut kerf geometry. Scientists in Belgium have come up with a new method that they say produces better cutting results.
Read the full article.
The new PLC CPI-PS10CM4 from Contec Co. is a compact embedded programmable logic controller (PLC) that is loaded with CODESYS, the world's most widely used software PLC. This product uses Contec's original single-board computer, which is based on Raspberry Pi's latest embedded module, the Compute Module 4 (CM4). By using the wide range of peripheral devices for Raspberry Pi, such as Contec's CPI Series, you can build various control applications in a PLC language that complies with the IEC 61131-3 international standard.
Learn more.
Saelig Company has introduced the Sensor Technology SGR525/526 Series Torque Sensors to provide precision torque monitoring that is critical for performance and safety. The square drive design (for applications with non-cylindrical shafts) allows for seamless integration into power tools, test rigs, industrial machinery, and precision fastening applications, ensuring superior torque measurement without the need for additional adapters or modifications. The SGR525 offers torque measurement only, while the SGR526 provides torque, speed, and power measurement using a 360-pulse-per-revolution encoder. Industries include automotive, aerospace, manufacturing, and research and development.
Learn more.
Wider conveyor belts operating at higher speeds are now commonplace in modern logistics. To keep up, SVS-Vistek is offering a cost-effective alternative to multi-camera systems with its fxo901CXGE 10-GigE color camera featuring the Sony IMX901-AQR wide-aspect global shutter 16.4-megapixel CMOS sensor. Unlike standard cameras, this unit captures targets in a wide field of view while maintaining high resolutions. The 4:1 horizontal aspect ratio allows one fxo901CXGE to replace an entire multi-camera system, removing the need for image synchronization.
Learn more.
The FLIR TG268 is a next-generation thermal imager that provides professionals in the utility, manufacturing, electrical, automotive, and industrial sectors with a lightweight, handheld, affordable condition monitoring tool. Latest enhancements include higher temperature ranges, improved resolution, and larger data storage capacity. Go beyond the restrictions of single-spot IR thermometers to view and evaluate hot and cold spots that may signify potentially dangerous issues. Accurately measure temps from -25 to 400 C. Native thermal images improved with Super Resolution upscaling.
Learn more.
A new study in Nature Photonics details the unique properties of a strange UCF-developed laser beam.
By Robert Wells, UCF
University of Central Florida (UCF) researchers have developed a new type of laser beam that doesn't follow long-held principles about how light refracts and travels.
The findings, which were published recently in Nature Photonics, could have huge implications for optical communication and laser technologies.
"This new class of laser beams has unique properties that are not shared by common laser beams," says Ayman Abouraddy, a professor in UCF's College of Optics and Photonics and the study's principal investigator.
The beams, known as spacetime wave packets, follow different rules when they refract -- that is, when they pass through different materials. Normally, light slows down when it travels into a denser material.
"In contrast, spacetime wave packets can be arranged to behave in the usual manner, to not change speed at all, or even to anomalously speed up in denser materials," Abouraddy says. "As such, these pulses of light can arrive at different points in space at the same time."
"Think about how a spoon inside a water-filled glass looks broken at the point where the water and air meet," Abouraddy says. "The speed of light in air is different from the speed of light in water. And so, the light rays wind up bending after they cross the surface between air to water, and so the spoon looks bent. This is a well-known phenomenon described by Snell's Law."
Although Snell's Law still applies, the underlying change in velocity of the pulses is no longer applicable for the new laser beams, Abouraddy says. These abilities are counter to Fermat's Principle that says light always travels such that it takes the shortest path, he says.
"What we find here, though, is no matter how different the materials are that light passes through, there always exists one of our spacetime wave packets that could cross the interface of the two materials without changing its velocity," Abouraddy says. "So, no matter what the properties of the medium are, it will go across the interface and continue as if it's not there."
For communication, this means the speed of a message traveling in these packets is no longer affected by traveling through different materials of different densities.
"If you think of a plane trying to communicate with two submarines at the same depth but one is far away and the other one's close by, the one that's farther away will incur a longer delay than the one that's close by," Abouraddy says. "We find that we can arrange for our pulses to propagate such that they arrive at the two submarines at the same time. In fact, now the person sending the pulse doesn't even need to know where the submarine is, as long as they are at the same depth. All those submarines will receive the pulse at the same time, so you can blindly synchronize them without knowing where they are."
Abouraddy's research team created the spacetime wave packets by using a device known as a spatial light modulator to reorganize the energy of a pulse of light so that its properties in space and time are no longer separate. This allows them to control the "group velocity" of the pulse of light, which is roughly the speed at which the peak of the pulse travels.
Previous work has shown the team's ability to control the group velocity of the spacetime wave packets, including in optical materials. The researchers were able to develop the technique by using a special device known as a spatial light modulator to mix the space and time properties of light, thereby allowing them to control the group velocity of the pulse of light, which is roughly the speed at which the peak of the pulse travels. The mixing of the two properties was key to the technique's success.
The current study built upon this work by finding they could also control the spacetime wave packets' speed through different media. This does not contradict special relativity in any way, because it applies to the propagation of the pulse peak rather than to the underlying oscillations of the light wave.
"This new field that we're developing is a new concept for light beams," Abouraddy says. "As a result, everything we look into using these beams reveals new behavior. All the behavior we know about light really takes tacitly an underlying presumption that its properties in space and time are separable. So, all we know in optics is based on that. It's a built-in assumption. It's taken to be the natural state of affairs. But now, breaking that underlying assumption, we're starting to see new behavior all over the place."
Co-authors of the study were Basanta Bhaduri, lead author and a former research scientist with UCF's College of Optics and Photonics, now with Bruker Nano Surfaces in California, and Murat Yessenov, a doctoral candidate in the college.
Bhaduri became interested in Abouraddy's research after reading about it in journals, such as Optics Express and Nature Photonics, and joined the professor's research team in 2018. For the study, he helped develop the concept and designed the experiments, as well as carried out measurements and analyzed data.
He says the study results are important in many ways, including the new research avenues it opens.
"Spacetime refraction defies our expectations derived from Fermat's principle and offers new opportunities for molding the flow of light and other wave phenomena," Bhaduri says.
Yessenov's roles included data analysis, derivations, and simulations. He says he became interested in the work by wanting to explore more about entanglement, which in quantum systems is when two well-separated objects still have a relation to each other.
"We believe that spacetime wave packets have more to offer, and many more interesting effects can be unveiled using them," Yessenov says.
Abouraddy says the next steps for the research include studying the interaction of these new laser beams with devices such as laser cavities and optical fibers, in addition to applying these new insights to matter rather than to light waves.
The research was funded by the U.S. Office of Naval Research.
Published August 2020