![]() |
May 17, 2022 | Volume 18 Issue 19 |
Manufacturing Center
Product Spotlight
Modern Applications News
Metalworking Ideas For
Today's Job Shops
Tooling and Production
Strategies for large
metalworking plants
Although many pin styles are available, Coiled Spring Pins are particularly well suited for
use in both friction- and free-fit hinges. To achieve optimum long-term hinge performance,
designers should observe these helpful design guidelines from SPIROL.
Read the full article.
Comau's newest N-WG welding gun is designed for high-speed spot welding for traditional, hybrid, and electric vehicles, in addition to general industry sectors. It features a patented, single-body architecture that enables rapid reconfiguration between welding types and forces, and it delivers consistent performance across a broad range of applications, including steel and (soon) aluminum welding. It supports both X and C standard gun configurations, has fast arm exchange, and universal mounting options. It is fully compatible with major robot brands and represents a significant advancement in spot welding performance and cost efficiency.
Learn more.
The SLIC Pin (Self-Locking Implanted Cotter Pin) from Pivot Point is a pin and cotter all in one. This one-piece locking clevis pin is cost saving, fast, and secure. It functions as a quick locking pin wherever you need a fast-lock function. It features a spring-loaded plunger that functions as an easy insertion ramp. This revolutionary fastening pin is very popular and used successfully in a wide range of applications.
Learn more.
How does prolonged exposure to intense UV light impact 3D-printed plastics? Will they fade? This is what Xometry's Director of Application Engineering, Greg Paulsen, set to find out. In this video, Paulsen performs comprehensive tests on samples manufactured using various additive processes, including FDM, SLS, SLA, PolyJet, DLS, and LSPc, to determine their UV resistance. Very informative. Some results may surprise you.
View the video.
Virtual Foundry, the company that brought us 3D-printable lunar regolith simulant, says its popular Copper Filamet™ (not a typo) is "back in stock and ready for your next project." This material is compatible with any open-architecture FDM/FFF 3D printer. After sintering, final parts are 100% pure copper. Also available as pellets. The company says this is one of the easiest materials to print and sinter. New Porcelain Filamet™ available too.
Learn more and get all the specs.
Copper foam from Goodfellow combines the outstanding thermal conductivity of copper with the structural benefits of a metal foam. These features are of particular interest to design engineers working in the fields of medical products and devices, defense systems and manned flight, power generation, and the manufacture of semiconductor devices. This product has a true skeletal structure with no voids, inclusions, or entrapments. A perennial favorite of Designfax readers.
Learn more.
With Xometry's PolyJet 3D-printing service, you can order full-color 3D prints easily. Their no-cost design guide will help you learn about different aspects of 3D printing colorful parts, how to create and add color to your models, and best practices to keep in mind when printing in full color. Learn how to take full advantage of the 600,000 unique colors available in this flexible additive process.
Get the Xometry guide.
Have you ever 3D printed a part that had flat spots or faceted surfaces where smooth curves were supposed to be? You are not alone, and it's not your 3D printer's fault. According to Markforged, the culprit is likely a lack of resolution in the STL file used to create the part.
Read this detailed and informative Markforged blog.
Put your knowledge to the test by trying to answer these key questions on how to choose the right high-temperature-resistant adhesive. The technical experts from Master Bond cover critical information necessary for the selection process, including questions on glass transition temperature and service temperature range. Some of the answers may surprise even the savviest of engineers.
Take the quiz.
One of the primary benefits of using a coiled spring pin to affix a hub or gear to a shaft is the coiled pin's ability to prevent hole damage. Another is the coiled pin absorbs wider hole tolerances than any other press-fit pin. This translates to lower total manufacturing costs of the assembly. However, there are a few design guidelines that must be adhered to in order to achieve the maximum strength of the pinned system and prevent damage to the assembly.
Read this very informative SPIROL article.
Creo Parametric 11.0 is packed with productivity-enhancing updates, and sometimes the smallest changes make the biggest impact in your daily workflows. Mark Potrzebowski, Technical Training Engineer, Rand 3D, runs through the newest functionality -- from improved surface modeling tools to smarter file management and model tree navigation. Videos provide extra instruction.
Read the full article.
Don't settle for ordinary springs. Opt for Rotor Clip wave springs. A wave spring is a type of flat wire compression spring characterized by its unique waveform-like structure. Unlike traditional coil springs, wave springs offer an innovative solution to complex engineering challenges, producing forces from bending, not torsion. Their standout feature lies in their ability to compress and expand efficiently while occupying up to 50% less axial space than traditional compression springs. Experience the difference Rotor Clip wave springs can make in your applications today!
View the video.
JW Winco's printed Standard Parts Handbook is a comprehensive 2,184-page reference that supports designers and engineers with the largest selection of standard parts categorized into three main groups: operating, clamping, and machine parts. More than 75,000 standard parts can be found in this valuable resource, including toggle clamps, shaft collars, concealed multiple-joint hinges, and hygienically designed components.
Get your Standard Parts Handbook today.
Watch Smalley's quick explainer video to see how engineer Frank improved his product designs by switching from traditional coil springs to compact, efficient wave springs. Tasked with making his products smaller while keeping costs down, Frank found wave springs were the perfect solution.
View the video.
You can improve the design and cost of your die cast parts with these top tips from Xometry's Joel Schadegg. Topics include: Fillets and Radii, Wall Thicknesses, Ribs and Metal Savers, Holes and Windows, Parting Lines, and more. Follow these recommendations so you have the highest chance of success with your project.
Read the full Xometry article.
Doctoral student William Trehern operating a vacuum arc melter, a synthesis method commonly used to create high-purity alloys of various compositions. Trehern and his team used an Artificial Intelligence Materials Selection framework to discover a new shape memory alloy. [Credit: Texas A&M Engineering]
Funded by the National Science Foundation's Designing Materials to Revolutionize Our Engineering Future (DMREF) Program, researchers from the Department of Materials Science and Engineering at Texas A&M University used an Artificial Intelligence Materials Selection framework (AIMS) to discover a new shape memory alloy. The shape memory alloy showed the highest efficiency during operation achieved thus far for nickel-titanium-based materials. In addition, their data-driven framework offers proof of concept for future materials development.
This study was recently published in Vol. 228 of the Acta Materialia journal.
Shape memory alloys are utilized in various fields where compact, lightweight, and solid-state actuations are needed, replacing hydraulic or pneumatic actuators because they can deform when cold and then return to their original shape when heated. This unique property is critical for applications -- such as airplane wings, jet engines, and automotive components -- that must withstand repeated, recoverable large-shape changes.
There have been many advancements in shape memory alloys since their beginnings in the mid-1960s, but at a cost. Understanding and discovering new shape memory alloys has required extensive research through experimentation and ad-hoc trial and error. New alloy discoveries have occurred in a decadal fashion. About every 10 years, a significant shape memory alloy composition or system has been discovered. Moreover, even with advances in shape memory alloys, they are hindered by their low energy efficiency caused by incompatibilities in their microstructure during the large shape change. Further, they are notoriously difficult to design from scratch.
To address these shortcomings, Texas A&M researchers have combined experimental data to create an AIMS computational framework capable of determining optimal materials compositions and processes, which led to the discovery of a new shape memory alloy composition.
"When designing materials, sometimes you have multiple objectives or constraints that conflict, which is very difficult to work around," said Dr. Ibrahim Karaman, Chevron Professor I and materials science and engineering department head. "Using our machine-learning framework, we can use experimental data to find hidden correlations between different materials' features to see if we can design new materials."
The shape memory alloy found during the study using AIMS was predicted and proven to achieve the narrowest hysteresis ever recorded. In other words, the material showed the lowest energy loss when converting thermal energy to mechanical work. The material showcased high efficiency when subject to thermal cycling due to its extremely small transformation temperature window. The material also exhibited excellent cyclic stability under repeated actuation.
A nickel-titanium-copper composition is typical for shape memory alloys. Nickel-titanium-copper alloys typically have titanium equal to 50% and form a single-phase material. Using machine learning, the researchers predicted a different composition with titanium equal to 47% and copper equal to 21%. While this composition is in the two-phase region and forms particles, they help enhance the material's properties, explained William Trehern, doctoral student and graduate research assistant in the materials science and engineering department and the publication's first author.
In particular, this high-efficiency shape memory alloy lends itself to thermal energy harvesting, which requires materials that can capture waste energy produced by machines and put it to use, and thermal energy storage, which is used for cooling electronic devices.
More notably, the AIMS framework offers the opportunity to use machine-learning techniques in materials science. The researchers see potential to discover more shape memory alloy chemistries with desired characteristics for various other applications.
"It is a revelation to use machine learning to find connections that our brain or known physical principles may not be able to explain," said Karaman. "We can use data science and machine learning to accelerate the rate of materials discovery. I also believe that we can potentially discover new physics or mechanisms behind materials behavior that we did not know before if we pay attention to the connections machine learning can find."
Other contributors include Dr. Raymundo Arroyave and Dr. Kadri Can Atli, professors in the materials science and engineering department, and materials science and engineering undergraduate student Risheil Ortiz-Ayala.
"While machine learning is now widely used in materials science, most approaches to date focus on predicting the properties of a material without necessarily explaining how to process it to achieve target properties," said Arroyave. "Here, the framework looked not only at the chemical composition of candidate materials, but also the processing necessary to attain the properties of interest."
Source: Texas A&M University
Published May 2022