![]() |
May 23, 2023 | Volume 19 Issue 20 |
Manufacturing Center
Product Spotlight
Modern Applications News
Metalworking Ideas For
Today's Job Shops
Tooling and Production
Strategies for large
metalworking plants
THK's Versatile Transport System is a high-mix production solution that will keep your production line moving. Its linear motor drive enables high-speed operations, and processing can be performed directly on top of the system's freely recirculating sliders. This highly precise, modular system has many unique features, including easily adjustable stop positions, flex layouts with path splitting and parallelization, and easy addition/subtraction of extension pieces.
View the video.
Some Thomson smart linear actuators have a position-based synchro-nization option to help manage unbalanced loads when using multiple units. The system adjusts the speed of each actuator to keep them starting, moving, and stopping synchronously, regardless of their respective load distribution. So useful. So smart.
Learn all about this feature.
PI now offers fast delivery of the L-511 linear microposi-tioning stage, which is designed for applications requiring minimum incremental motion down to 20 nm and drive forces up to 22 lb. The L-511 can be combined to form XY or XYZ motion systems and integrated with rotary stages for enhanced flexibility. Features high-load recirculating ball bearings for exceptional durability, even under demanding, repetitive cycles. To enhance positioning accuracy and automation throughput, this stage integrates non-contact, direction-sensing optical reference point switches located at mid-travel.
Learn more.
Inbolt and FANUC are launching a manufacturing breakthrough enabling FANUC robots to tackle one of the most complex automation challenges: performing production tasks on continuously moving parts at line speeds. With Inbolt's AI-powered 3D vision, manufacturers can now automate screw insertion, bolt rundown, glue application, and other high-precision tasks on parts moving down the line without costly infrastructure investments or cycle time compromises.
Learn more.
THK has developed its best-performing, high-speed rotary bearing ever: the High-Speed, Double-Row Angular Contact Ring BWH. This rotary bearing has balls aligned inside a cage between the inner and outer rings and is part of the THK Rotary Series, along with the cross-roller ring. The main features of this product are its ability to receive loads in all directions as well as its high rigidity and rotational accuracy, which are equal to that of cross-roller rings. By adopting a new structure to change the rolling elements from rollers to balls, this product achieves the greatest high-speed performance ever offered by THK.
Learn more.
As semicon-ductors and optical components become smaller and more sophisticated, the TZ Series of precision elevating tables from IKO International provides exceptional vertical positioning accuracy in a compact size. This unit features a unique wedge mechanism guided in the vertical direction by a pair of IKO C-Lube Super MX linear motion rolling guides arranged in parallel to achieve highly precise positioning with exceptional rigidity. An optional linear encoder provides full closed loop control to achieve positioning accuracy as high as 0.005 mm, with repeatability of +/-0.001 mm.
Learn more and get all the specs.
The COBOTTA PRO from DENSO Robotics is a lightweight, high-speed collaborative robot designed for communication between workers and robots while maximizing productivity. It delivers a blend of productivity and safety for both simple tasks and multi-step processes like assembly and inspection work. The 6-axis unit operates at speeds up to 2,500 mm per sec when no workers are near and slows or stops when people approach. Two models available: PRO 900 (max payload 6 kg) and PRO 1300 (max payload 12 kg). Many more functions and features.
Learn more.
New powerful, low-profile, pull-type clapper solenoids are available from Magnetic Sensor Systems (MSS). Applications include valve control, locks, starters, ventilators, clamping, sorting, appliances, tools, HVAC, brakes, clutches, switches, mixing, fire suppression systems, door controls, detent latches, and more. The S-16-264 Series of 17 Pull-Type Clapper Solenoids have ampere turns (windings) adjusted to meet the specific force and duty cycle requirements of your application. They provide up to 130 lb (578 N) of force.
Get all the specs for these solenoids and other options.
Bishop-Wisecarver provides a quick, very useful guide to help you evaluate the right drive strategy for your system: belt, screw, or chain-driven actuator. Each drive type has unique advantages and limitations, so evaluating all your options will help you find the most suitable actuator setup for your specific application needs.
Read the Bishop-Wisecarver blog.
PI, a global leader in precision motion control and nanoposi-tioning, now offers fast delivery of the L-511 linear micropositioning stage, which is designed for applications requiring minimum incremental motion down to 20 nm, drive forces up to 22 lb, and multi-axis configuration options. The L-511 can be combined to form XY or XYZ motion systems and integrated with rotary stages. A variety of drive and encoder options (stepper and servo motors, rotary, and linear encoders) enable ultra-fine sensitivity. Applications include: metrology, laser processing, semiconductors, biotech, optical alignment, and advanced automation.
Learn more and get all the specs.
According to the experts at Lin Engineering, there are two primary types of stepper motors to consider: permanent magnet (PM) and hybrid. But which is right for your application? Both types have their advantages and disadvantages, and the choice ultimately depends on your specific requirements.
Read this informative Lin Engineering article.
The new drylin WWP linear guide from igus features a PTFE-free locking carriage. Engineered from lubrication-free, high-performance polymers and aluminum, the guide offers a lightweight, hygienic, and low-maintenance alternative to complex mechanical and electronic adjustment systems. It is significantly more compact and lightweight than conventional recirculating ball-bearing systems. Applications include interior components in vehicles, aircraft, and furniture.
Learn more and get all the specs.
MAXXDRIVE industrial gear units from NORD DRIVE-SYSTEMS are an established drive solution for heavy-duty applications. In addition to conveying, lifting, and driving, they also play an important role in mixing and agitating systems. MAXXDRIVE units feature a compact, one-piece UNICASE housing that delivers long service life, easy maintenance, and quiet operation. Their robust design handles high axial and radial loads, achieves output torques up to 2,495,900 lb-in., and powers up to 8,075 hp.
Learn more.
According to PBC Linear, their new non-captive linear actuators are different from the more common external versions of lead screw-driven linear actuators because they allow the lead screw to completely pass through the motor. This fundamental difference offers advantages for designs that have limited space available or for engineers looking to shrink the overall size of their design package.
Read the full PBC Linear blog.
Güdel Inc. is highlighting new technologies at Automate 2025 booth #2418 that demonstrate its unmatched ability to solve automation engineering challenges. One is the Cobomover, a 7th-axis linear track purpose-built for collaborative and lightweight robots. Designed and manufactured in Switzerland, this unit extends the working range of robots up to 5 m, allowing them to operate multiple workstations and perform a variety of tasks without manual repositioning. Compatible with over 60 cobots and small traditional robots.
Learn more and get all the specs.
An image of the perovskite samples inside the MISSE Platform installed on the exterior of the International Space Station. [Credit: NASA]
By Ellen Bausback, NASA's Glenn Research Center
Dr. Lyndsey McMillon-Brown was hoping to see anything but mustard yellow.
When the NASA research electrical engineer clicked open the photo of a small sample -- a swatch of film no bigger than a sticky note -- she let out a cheer. The film was still dark black after spending 10 months on the International Space Station, proving her team's innovative solar cell material is suitable for possible use on future space missions.
McMillon-Brown's space station-tested sample was part of the first spaceflight demonstration led by NASA's Glenn Research Center in Cleveland to explore if this new material -- called perovskite -- is durable and can survive the harsh environment of space. The dark color she saw was an early indication the demonstration had been successful.
Dark black meant the perovskite film was in its most efficient form for absorbing light, while yellow would have meant the crystalline material had degraded into lead iodide, which isn't useful for solar cells.
"We didn't know when we sent it exactly what to expect," McMillon-Brown said. "It was kind of like opening a door and not knowing what is going to be on the other side."
If humanity is to establish a long-term presence on the Moon and Mars, astronauts will need reliable power sources to sustain their habitats and science instruments. NASA researchers think perovskite could be used in solar cells that are thinner, cheaper, lighter, and more flexible than those currently made of silicon or group III and V elements on the periodic table.
NASA Glenn's perovskite sample can be seen as it was integrated into the MISSE platform at Aegis in Houston, TX, prior to launch to the International Space Station. [Credit: NASA]
Although perovskites had been put through the experimental paces on Earth, flying in space meant the material could be pummeled by vacuum, extreme temperatures, radiation, and light stressors simultaneously.
"There is no ground analog, no machine that will do all of those crazy things to it at the same time quite like the International Space Station," McMillon-Brown said.
The 1-in. by 1-in. flight sample was created in a lab in early 2019. Once the thin film met strict safety requirements, it rocketed off to the space station in March 2020 as a part of the Materials International Space Station Experiment (MISSE). Astronauts performed a spacewalk to open the suitcase-like MISSE platform and attach it to the outside of the space station, exposing the perovskite and other experiments to the extreme conditions of space.
After hurtling around in orbit and plunging in and out of direct sunlight for nearly a year, the film returned to Earth in January 2021. The sample was analyzed by partners at the University of California Merced, led by Professor Sayantani Ghosh, where scientists studied what happened to it and compared it to a control sample that stayed on the ground. Partners at the National Renewable Energy Laboratory also contributed to the post-flight analysis.
Researchers had two key takeaways.
First, temperature swings during orbit constantly shrank and expanded the sample, putting stress on it and changing how it interacted with light. However, they discovered something surprising: When the space-traveling perovskite was bathed in light back on Earth, its built-up stress relaxed, and its sunlight-absorbing qualities were restored, unlike the control sample, which degraded when exposed to the same conditions.
This is a valuable quality, McMillon-Brown says, because it means perovskite solar cells could be used in space during long-duration missions.
"We don't know exactly what about the space environment gave our film this superpower," she said.
The other takeaway was that temperatures in space influenced how perovskite's crystals were arranged, changing how they absorbed light -- for the better.
"The fact that the one in space holds a favorable arrangement for longer and can work at much lower temperatures is also a strong benefit for this material," McMillon-Brown said.
Up next, McMillon-Brown and her team are isolating what specific parts of the space environment transformed the perovskite. They'll also be combing through results from complete perovskite solar cell experiments that have flown on the space station in the time since the first sample was returned.
"A lot of people doubted that these materials could ever be strong enough to deal with the harsh environment of space," McMillon-Brown said. "Not only do they survive, but in some ways, they thrived. I love thinking of the applications of our research and that we're going to be able to meet the power needs of missions that are not feasible with current solar technologies."
Published May 2023