![]() |
July 02, 2024 | Volume 20 Issue 25 |
Manufacturing Center
Product Spotlight
Modern Applications News
Metalworking Ideas For
Today's Job Shops
Tooling and Production
Strategies for large
metalworking plants
The SLIC Pin (Self-Locking Implanted Cotter Pin) from Pivot Point is a pin and cotter all in one. This one-piece locking clevis pin is cost saving, fast, and secure. It functions as a quick locking pin wherever you need a fast-lock function. It features a spring-loaded plunger that functions as an easy insertion ramp. This revolutionary fastening pin is very popular and used successfully in a wide range of applications.
Learn more.
How does prolonged exposure to intense UV light impact 3D-printed plastics? Will they fade? This is what Xometry's Director of Application Engineering, Greg Paulsen, set to find out. In this video, Paulsen performs comprehensive tests on samples manufactured using various additive processes, including FDM, SLS, SLA, PolyJet, DLS, and LSPc, to determine their UV resistance. Very informative. Some results may surprise you.
View the video.
Virtual Foundry, the company that brought us 3D-printable lunar regolith simulant, says its popular Copper Filamet™ (not a typo) is "back in stock and ready for your next project." This material is compatible with any open-architecture FDM/FFF 3D printer. After sintering, final parts are 100% pure copper. Also available as pellets. The company says this is one of the easiest materials to print and sinter. New Porcelain Filamet™ available too.
Learn more and get all the specs.
Copper foam from Goodfellow combines the outstanding thermal conductivity of copper with the structural benefits of a metal foam. These features are of particular interest to design engineers working in the fields of medical products and devices, defense systems and manned flight, power generation, and the manufacture of semiconductor devices. This product has a true skeletal structure with no voids, inclusions, or entrapments. A perennial favorite of Designfax readers.
Learn more.
With Xometry's PolyJet 3D-printing service, you can order full-color 3D prints easily. Their no-cost design guide will help you learn about different aspects of 3D printing colorful parts, how to create and add color to your models, and best practices to keep in mind when printing in full color. Learn how to take full advantage of the 600,000 unique colors available in this flexible additive process.
Get the Xometry guide.
Have you ever 3D printed a part that had flat spots or faceted surfaces where smooth curves were supposed to be? You are not alone, and it's not your 3D printer's fault. According to Markforged, the culprit is likely a lack of resolution in the STL file used to create the part.
Read this detailed and informative Markforged blog.
Put your knowledge to the test by trying to answer these key questions on how to choose the right high-temperature-resistant adhesive. The technical experts from Master Bond cover critical information necessary for the selection process, including questions on glass transition temperature and service temperature range. Some of the answers may surprise even the savviest of engineers.
Take the quiz.
One of the primary benefits of using a coiled spring pin to affix a hub or gear to a shaft is the coiled pin's ability to prevent hole damage. Another is the coiled pin absorbs wider hole tolerances than any other press-fit pin. This translates to lower total manufacturing costs of the assembly. However, there are a few design guidelines that must be adhered to in order to achieve the maximum strength of the pinned system and prevent damage to the assembly.
Read this very informative SPIROL article.
Creo Parametric 11.0 is packed with productivity-enhancing updates, and sometimes the smallest changes make the biggest impact in your daily workflows. Mark Potrzebowski, Technical Training Engineer, Rand 3D, runs through the newest functionality -- from improved surface modeling tools to smarter file management and model tree navigation. Videos provide extra instruction.
Read the full article.
Don't settle for ordinary springs. Opt for Rotor Clip wave springs. A wave spring is a type of flat wire compression spring characterized by its unique waveform-like structure. Unlike traditional coil springs, wave springs offer an innovative solution to complex engineering challenges, producing forces from bending, not torsion. Their standout feature lies in their ability to compress and expand efficiently while occupying up to 50% less axial space than traditional compression springs. Experience the difference Rotor Clip wave springs can make in your applications today!
View the video.
JW Winco's printed Standard Parts Handbook is a comprehensive 2,184-page reference that supports designers and engineers with the largest selection of standard parts categorized into three main groups: operating, clamping, and machine parts. More than 75,000 standard parts can be found in this valuable resource, including toggle clamps, shaft collars, concealed multiple-joint hinges, and hygienically designed components.
Get your Standard Parts Handbook today.
Watch Smalley's quick explainer video to see how engineer Frank improved his product designs by switching from traditional coil springs to compact, efficient wave springs. Tasked with making his products smaller while keeping costs down, Frank found wave springs were the perfect solution.
View the video.
You can improve the design and cost of your die cast parts with these top tips from Xometry's Joel Schadegg. Topics include: Fillets and Radii, Wall Thicknesses, Ribs and Metal Savers, Holes and Windows, Parting Lines, and more. Follow these recommendations so you have the highest chance of success with your project.
Read the full Xometry article.
3D Systems unveiled several new solutions at the RAPID+TCT 2025 show in April designed to change the way industries innovate. From new 3D printers and materials for high-mix, low-volume applications to marked improvements in how investment casting can be done, learn what is the state of the art from the original inventors of 3D printing.
Read the full article.
JW Winco has developed a new type of indexing plunger -- GN 824 -- that can independently latch into edges and grooves. This is made possible by a chamfered plunger pin. When the chamfered pin encounters a raised latching geometry, it retracts and then springs back out again once it reaches the latching point. This new indexing plunger can be ordered with axial thread for fastening and a black plastic knob for operating the indexing plunger. In a clever design, the plunger pin can be adjusted by 360 degrees to ensure that it encounters the mating surface perpendicularly. This hardware is well suited for transport frames, mechanisms, or covers that need to be locked in place quickly and securely, especially without the need for manual intervention.
Learn more.
When neuroscientists think about the strategy an animal might use to carry out a task -- like finding food, hunting prey, or navigating a maze -- they often propose a single model that lays out the best way for the animal to accomplish the job.
However, in the real world, animals -- and humans -- may not use the optimal way, which can be resource intensive. Instead, they use a strategy that's good enough to do the job but takes a lot less brain power.
In new research, scientists at Howard Hughes Medical Institute's Janelia Research Campus in Ashburn, VA, set out to better understand the possible ways an animal could successfully solve a problem, beyond just the best strategy.
The work shows there are a huge number of ways an animal can accomplish a simple foraging task. It also lays out a theoretical framework for understanding these different strategies, how they relate to each other, and how they solve the same problem differently.
Some of these less-than-perfect options for accomplishing a task work nearly as well as the optimal strategy but with a lot less effort, the researchers found, freeing up animals to use precious resources to handle multiple tasks.
"As soon as you release yourself from being perfect, you would be surprised just how many ways there are to solve a problem," says Tzuhsuan Ma, a postdoc in the Hermundstad Lab who led the research.
The new framework could help researchers start examining these "good enough" strategies, including why different individuals might adapt different strategies, how these strategies might work together, and how generalizable the strategies are to other tasks. That could help explain how the brain enables behavior in the real world.
"Many of these strategies are ones we would have never dreamed up as possible ways of solving this task, but they do work well, so it's entirely possible that animals could also be using them," says Janelia Group Leader Ann Hermundstad. "They give us a new vocabulary for understanding behavior."
Looking beyond perfection
The research began three years ago when Ma started wondering about the different strategies an animal could possibly use to accomplish a simple but common task: choosing between two options where the chance of being rewarded changes over time.
The researchers were interested in examining a group of strategies that fall between optimal and completely random solutions; they were "small programs" that are resource limited but still get the job done. Each program specifies a different algorithm for guiding an animal's actions based on past observations, allowing it to serve as a model of animal behavior.
It turns out, there are a lot of such programs -- about a quarter of a million. To make sense of these strategies, the researchers first looked at a handful of the top-performing ones. Surprisingly, they found they were essentially doing the same thing as the optimal strategy, despite using fewer resources.
"We were a little disappointed," Ma says. "We spent all this time searching for these small programs, and they all follow the same computation that the field already knew how to mathematically derive without all this effort."
The researchers were motivated, however, to keep looking -- they had a strong intuition that there had to be programs out there that were good but different from the optimal strategy. Once they looked beyond the very best programs, they found what they were looking for: about 4,000 programs that fall into this "good enough" category. More importantly, more than 90% of them did something new.
They could have stopped there, but a question from a fellow researcher spurred them on: How could they figure out which strategy an animal was using?
The question prompted the team to dive deep into the behavior of individual programs and develop a systematic approach to thinking about the entire collection of strategies. They first developed a mathematical way to describe the programs' relationships to each other through a network that connected the different programs. Next, they looked at the behavior described by the strategies, devising an algorithm to reveal how one of these "good enough" programs could evolve from another.
They found that small changes to the optimal program can lead to big changes in behavior while still preserving performance. If some of these new behaviors are also useful in other tasks, it suggests that the same program could be good enough for solving a range of different problems.
"If you are thinking about an animal not being a specialist who is optimized to solve just one problem, but rather a generalist who solves many problems, this really is a new way to study that," Ma says.
Where do the results go from here?
The new work provides a framework for researchers to start thinking beyond single, optimal programs for animal behavior. Now, the team is focused on examining how generalizable the small programs are to other tasks and designing new experiments to determine which program an animal might be using to carry out a task in real time. They are also working with other researchers at Janelia to test their theoretical framework.
"Ultimately, getting a strong grasp on an animal's behavior is an essential prerequisite to understanding how the brain solves different types of problems, including some that our best artificial systems only solve inefficiently, if at all," Hermundstad says. "The key challenge is that animals might be using very different strategies than we might initially assume, and this work is helping us uncover that space of possibilities."
Source: Howard Hughes Medical Institute
Published July 2024