September 24, 2024 Volume 20 Issue 36

Mechanical News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

What's a SLIC Pin®? Pin and cotter all in one!

The SLIC Pin (Self-Locking Implanted Cotter Pin) from Pivot Point is a pin and cotter all in one. This one-piece locking clevis pin is cost saving, fast, and secure. It functions as a quick locking pin wherever you need a fast-lock function. It features a spring-loaded plunger that functions as an easy insertion ramp. This revolutionary fastening pin is very popular and used successfully in a wide range of applications.
Learn more.


Engineering challenge: Which 3D-printed parts will fade?

How does prolonged exposure to intense UV light impact 3D-printed plastics? Will they fade? This is what Xometry's Director of Application Engineering, Greg Paulsen, set to find out. In this video, Paulsen performs comprehensive tests on samples manufactured using various additive processes, including FDM, SLS, SLA, PolyJet, DLS, and LSPc, to determine their UV resistance. Very informative. Some results may surprise you.
View the video.


Copper filament for 3D printing

Virtual Foundry, the company that brought us 3D-printable lunar regolith simulant, says its popular Copper Filamet™ (not a typo) is "back in stock and ready for your next project." This material is compatible with any open-architecture FDM/FFF 3D printer. After sintering, final parts are 100% pure copper. Also available as pellets. The company says this is one of the easiest materials to print and sinter. New Porcelain Filamet™ available too.
Learn more and get all the specs.


Copper foam -- so many advantages

Copper foam from Goodfellow combines the outstanding thermal conductivity of copper with the structural benefits of a metal foam. These features are of particular interest to design engineers working in the fields of medical products and devices, defense systems and manned flight, power generation, and the manufacture of semiconductor devices. This product has a true skeletal structure with no voids, inclusions, or entrapments. A perennial favorite of Designfax readers.
Learn more.


Full-color 3D-printing Design Guide from Xometry

With Xometry's PolyJet 3D-printing service, you can order full-color 3D prints easily. Their no-cost design guide will help you learn about different aspects of 3D printing colorful parts, how to create and add color to your models, and best practices to keep in mind when printing in full color. Learn how to take full advantage of the 600,000 unique colors available in this flexible additive process.
Get the Xometry guide.


Tech Tip: How to create high-quality STL files for 3D prints

Have you ever 3D printed a part that had flat spots or faceted surfaces where smooth curves were supposed to be? You are not alone, and it's not your 3D printer's fault. According to Markforged, the culprit is likely a lack of resolution in the STL file used to create the part.
Read this detailed and informative Markforged blog.


Test your knowledge: High-temp adhesives

Put your knowledge to the test by trying to answer these key questions on how to choose the right high-temperature-resistant adhesive. The technical experts from Master Bond cover critical information necessary for the selection process, including questions on glass transition temperature and service temperature range. Some of the answers may surprise even the savviest of engineers.
Take the quiz.


Engineer's Toolbox: How to pin a shaft and hub assembly properly

One of the primary benefits of using a coiled spring pin to affix a hub or gear to a shaft is the coiled pin's ability to prevent hole damage. Another is the coiled pin absorbs wider hole tolerances than any other press-fit pin. This translates to lower total manufacturing costs of the assembly. However, there are a few design guidelines that must be adhered to in order to achieve the maximum strength of the pinned system and prevent damage to the assembly.
Read this very informative SPIROL article.


What's new in Creo Parametric 11.0?

Creo Parametric 11.0 is packed with productivity-enhancing updates, and sometimes the smallest changes make the biggest impact in your daily workflows. Mark Potrzebowski, Technical Training Engineer, Rand 3D, runs through the newest functionality -- from improved surface modeling tools to smarter file management and model tree navigation. Videos provide extra instruction.
Read the full article.


What's so special about wave springs?

Don't settle for ordinary springs. Opt for Rotor Clip wave springs. A wave spring is a type of flat wire compression spring characterized by its unique waveform-like structure. Unlike traditional coil springs, wave springs offer an innovative solution to complex engineering challenges, producing forces from bending, not torsion. Their standout feature lies in their ability to compress and expand efficiently while occupying up to 50% less axial space than traditional compression springs. Experience the difference Rotor Clip wave springs can make in your applications today!
View the video.


New Standard Parts Handbook from JW Winco

JW Winco's printed Standard Parts Handbook is a comprehensive 2,184-page reference that supports designers and engineers with the largest selection of standard parts categorized into three main groups: operating, clamping, and machine parts. More than 75,000 standard parts can be found in this valuable resource, including toggle clamps, shaft collars, concealed multiple-joint hinges, and hygienically designed components.
Get your Standard Parts Handbook today.


Looking to save space in your designs?

Watch Smalley's quick explainer video to see how engineer Frank improved his product designs by switching from traditional coil springs to compact, efficient wave springs. Tasked with making his products smaller while keeping costs down, Frank found wave springs were the perfect solution.
View the video.


Top die casting design tips

You can improve the design and cost of your die cast parts with these top tips from Xometry's Joel Schadegg. Topics include: Fillets and Radii, Wall Thicknesses, Ribs and Metal Savers, Holes and Windows, Parting Lines, and more. Follow these recommendations so you have the highest chance of success with your project.
Read the full Xometry article.


What's the latest from 3D Systems? Innovations for different industries, processes

3D Systems unveiled several new solutions at the RAPID+TCT 2025 show in April designed to change the way industries innovate. From new 3D printers and materials for high-mix, low-volume applications to marked improvements in how investment casting can be done, learn what is the state of the art from the original inventors of 3D printing.
Read the full article.


Clever! Indexing plungers with chamfered pins

JW Winco has developed a new type of indexing plunger -- GN 824 -- that can independently latch into edges and grooves. This is made possible by a chamfered plunger pin. When the chamfered pin encounters a raised latching geometry, it retracts and then springs back out again once it reaches the latching point. This new indexing plunger can be ordered with axial thread for fastening and a black plastic knob for operating the indexing plunger. In a clever design, the plunger pin can be adjusted by 360 degrees to ensure that it encounters the mating surface perpendicularly. This hardware is well suited for transport frames, mechanisms, or covers that need to be locked in place quickly and securely, especially without the need for manual intervention.
Learn more.


U. Michigan says auto plants grew their workforces after transitioning to EV production

Data suggests the switch to EVs may not mean the loss of assembly jobs that some predicted.

By Jim Lynch, University of Michigan

U.S. auto plants producing battery electric vehicles have required a larger workforce than traditional internal combustion engine plants -- a finding that runs counter to early predictions about how EVs would impact the industry.

Researchers at the University of Michigan (U-M) have shown that plants in the ramp-up stages of transitioning to full-scale EV production saw that 10 times more workers are needed to assemble every vehicle. And at one plant studied, now with over a decade of EV production, the total number of workers needed to make each vehicle has remained three times higher.

"There is a shortage of information out there about how the transition is shaping up," said Anna Stefanopoulou, the William Clay Ford Professor of Technology and senior author of the study published in Nature Communications. "What we're seeing, with the data that's available, is that the loss of employment predicted for EVs is not happening."

Workers at a Ford plant in Dearborn, MI, work beneath the body of a fully electric Ford F-150 Lightning in 2022. [Credit: Photo by Brenda Ahearn, Michigan Engineering/Courtesy of University of Michigan]

 

 

 

 

Previous estimates of what EV manufacturing would mean for autoworkers depicted a 30 to 40% reduction -- a loss of 200,000 jobs or more. Much of that stems from the basic difference between electric and gas-powered cars.

EVs require roughly 100 fewer parts than their ICE counterparts, and their powertrain designs are far simpler. Transmissions, exhaust, and cooling systems are not part of the EV equation, so the expectation has been assembly jobs would be lost. But the findings show the opposite.

U-M's research team offered several factors likely contributing to higher numbers of assembly workers at EV plants, including:

  • Investment in the development of new manufacturing technologies, which often requires more labor to improve.
  • Higher vehicle complexity. Companies beginning to manufacture EVs usually start out making premium vehicles with the most advanced features and technologies.
  • Some manufacturers have consolidated workers in a single, central location to lower costs from outsourcing, a practice known as vertical integration.

The 30% job loss number is often attributed to James Hackett, Ford's former president and CEO from a forecast in 2017.

"It's a number that has been repeated by a lot of big names in the auto industry," said Omar Ahmed, a U-M graduate student research assistant and a co-first author of the study. "But if you look closely, no one's really done the work to look at real plants that have transitioned from building ICE vehicles to building EVs."

U-M researchers identified three plants that have transitioned from building all ICEs at one time, to manufacturing all EVs. Those are Tesla's factory in Fremont, CA (previously owned by General Motors and Toyota), Rivian's factory in Normal, IL (previously operated by Mitsubishi), and the General Motors plant in Orion Township, MI (currently not operating). The team compiled two decades of data on the number of assembly workers at the three plants using public census data in the U.S., as well as production data from the Automotive News Research & Data Center

"Our work shows clearly that the number of assembly workers in the plants has increased in many cases," said Andrew Weng, a U-M research fellow in mechanical engineering and co-first author of the study. "However, the jury is still out in terms of parts manufacturing jobs, which will largely depend on where battery cell manufacturing takes place."

Tesla's Fremont plant offers the longest stretch of EV production to study. Gabriel Ehrlich, an associate research scientist and director of U-M's Research Seminar in Quantitative Economics, said there are lessons to be gleaned from that auto plant's data.

"The plant has been operating for ten years now, and they've obviously been able to improve labor efficiency," he said. "But the pace of improvement indicates that it can take up to 15 years for a plant to reach parity with its ICE predecessor.

"It's going to be a slow process, one that gives communities, companies, and workers time to adjust."

The study was partially funded by the National Science Foundation.

Published September 2024

Rate this article

[U. Michigan says auto plants grew their workforces after transitioning to EV production]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2024 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy