January 07, 2025 Volume 21 Issue 01

Mechanical News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

SPEE3D develops ultra-corrosion-resistant alloy
-- a game-changer for maritime additive manufacturing

Australian manufacturer SPEE3D has developed two grades of an ultra-corrosion-resistant Nickel Aluminum Bronze alloy that are compatible with its Cold Spray Additive Manufacturing technology. The powder material is a game-changer for maritime OEMs and the U.S. Navy, as it will help with supply chain delays and keep critical maritime systems operational.
Read the full article.


Achieve higher loads with a round wire Wave Spring

Wavo Springs are produced from round-section wire to provide higher loads while maintaining the accurate loading found in wave springs. As an alternative to Belleville Springs, the Wavo provides similar loads but with an accurate, predictable spring rate. Available in carbon and stainless steel from stock, sizes range from 1/2" to 6" diameters. Free samples are also available!
Learn more.


Conveying and guiding: One-stop shop for components

JW Winco has expanded its range of conveying and guiding components with additional practical elements designed for common industrial applications, providing everything needed -- from guides and rails to brackets and feet -- for constructing unmotorized conveyor lines using standard parts.
Read the full article.


Why hybrid bearings are becoming the new industry standard

A combination of steel outer and inner rings with ceramic balls or rollers is giving hybrid bearings unique properties, making them suitable for use in a wide range of modern applications. SKF hybrid bearings make use of silicon nitride (twice as hard as bearing steel) rolling elements and are available as ball bearings, cylindrical roller bearings, and in custom designs. From electric erosion prevention to friction reduction and extended maintenance intervals, learn all about next-gen hybrid bearings.
Read the SKF technical article.


What are carbon composite bellows springs?

The Carbon Composite Bellows Spring (CCBS) from MW Components is a system of carbon fiber elements that combine to work as a high-performance, lightweight, and design-flexible compression spring meant to replace coil springs or metallic Belleville disc springs. A functional spring is made from several individual elements paired and joined to make a stack. The stack spring rate is determined by the number of elements, the base rate of each element, and their series or parallel orientation in the stack. Applications include motorsports, aerospace, and high-performance activities.
Learn more.


Bellows couplings for robotics

Ruland bellows couplings are ideal for precision motion in robotic applications due to their zero-backlash design, high torque and torsional stiffness, and various styles that ensure accurate movement and smooth operation. These lightweight couplings are commonly used in industrial, medical, and autonomous robotic systems requiring high speed and accuracy. They have reduced vibrations at speeds up to 10,000 rpm and can accommodate all forms of misalignment, making them highly versatile for different applications.
Learn more.


Structural adhesive bonding 101

Learn how LORD structural adhesives are eliminating rivets, welds, and mechanical fasteners to enable lower-cost assembly. Listen to Angela Zambanini as she describes Parker LORD's acrylic, epoxy, and urethane adhesives and the best applications for each adhesive category.
View the video.


World first: Industrial 3D printer makes metal or advanced composite parts

Markforged Holding Corporation has unveiled the FX10 Metal Kit, a print engine that brings metal-printing capability to the FX10 machine system. With this kit, the FX10 becomes the world's first industrial 3D printer that can be switched to print with metal filaments or composites.
Read the full article.


World's first current-carrying fastening technology

PEM® eConnect™ current-carrying pins from Penn-Engineering provide superior electrical connections in applications that demand high performance from internal components, such as automotive electronics. This first-to-market tech provides repeatable, consistent electrical joints and superior installation unmatched by traditional fastening methods. Features include quick and secure automated installation, no hot spots or poor conductivity, and captivation options that include self-clinching and broaching styles.
Learn more about eConnect pins.


Retaining magnets from JW Winco: Universal and clever

JW Winco has expanded its magnet line to support more applications with new materials, shapes, systems, and even raw magnets. Learn about their latest offerings, including retaining magnets designed for corrosive environments (GN 50.8), encapsulated magnets designed for sensitive or painted surfaces (GN 51.8), handle magnets (GN 53.3), and powerful magnets designed to handle challenging environs (GN 52.6).
Learn more.


New polymer bearings are PFAS- and PTFE-free

igus has developed a new polymer bearing material called iglide JPF that is free of both per- and polyfluoroalkyl substances (PFAS) and polytetrafluoroethylene (PTFE). This innovation marks an important step in the company's efforts to create sustainable alternatives to conventional plain bearings. JPF is a dry-running, wear-resistant polymer that offers comparable friction and wear performance to iglide J. It delivers high wear resistance and durability.
Learn more.


New high-speed PSLA 270 printer from 3D Systems

The all-new PSLA 270 projector-based polymer 3D-printing platform and associated new materials from 3D Systems enable faster production times for a wide range of applications. This machine's high throughput and accuracy make it ideal for industries like healthcare, aerospace, automotive, and manufacturing, where precise and durable components are critical. Complementary Wash and Cure systems streamline post-processing and ensure high-quality finished parts.
Learn more including materials and build sizes.


New slim and ergonomic compression latch

Southco has launched the E3 Compact MIM compression latch, bringing new ergonomic and safety features to its durable family of latches in a low-profile package. The E3 Compact MIM compression latch is metal injection molded and has a shorter head (4 mm vs. the normal 6.4 mm), 180-degree ergonomic actuation, and visual indicators machined into the latch and color coded to easily show when it is open or closed. Features a sleek, low-profile, polished look.
Learn more.


Optimizing seal selection: From O-rings to press-in-place

What is the right seal for my application? The Sealing & Shielding Team at Parker Hannifin is looking to help you out in this blog. Learn some basics and possible modifications, including application and manufacturing considerations, gland options, mating hardware, and more. They are always very helpful over there at Parker.
Read the Parker blog.


Adjustable Spot Cooler provides precise industrial cooling

EXAIR's Adjustable Spot Cooler System offers a low-cost, reliable, and maintenance-free solution for industrial spot cooling needs. This tool offers precision control, versatility, and ease of use for a variety of applications including milling, machining, soldering, gas sampling, welding, and more. Utilizing cool and clean compressed air, the Spot Cooler allows users to precisely adjust temperatures from as low as -30°F (-34°C) to room temperature with the simple turn of a knob.
Learn more.


Can golf ball dimple tech help rockets fly better?

Graham Monroe, left, and Sal Rodriguez display the dimpled rocket nose they built as part of a collaboration between Sandia and the University of New Mexico. [Credit: Photo by Jennifer Plante]

 

 

Sal Rodriguez, a nuclear engineer at Sandia National Laboratories, is forging a rocket revolution with the help of the University of New Mexico and student Graham Monroe.

Their cutting-edge research is propelling the future of aerospace by infusing rocket science with a touch of golf ball magic.

They incorporated dimples similar to those found on golf balls, a key element in Rodriguez's fluid dynamics and heat transfer research.

The making of the rocket nose
The idea started in 2019 when Monroe was working with Rodriguez at Sandia as a student intern.

"I was always interested in aerodynamics," Monroe said. "I was working on my bachelor's in engineering degree in 2019 when I took part in the Lobo Launch at the Spaceport America Cup. Meanwhile, Sal was researching some dimpling projects. We started talking and came up with the idea of dimpling the nose cone of a rocket."

The experiment turned into Monroe's master's thesis project.

They started with the dimpling program that Rodriguez created starting in 2014 and copyrighted in 2017.

The dimpled rocket created by Sal Rodriguez and Graham Monroe was tested in December of 2022. [Credit: Photo courtesy of Sal Rodriguez]

 

 

"The program includes a specific set of equations that allows the user to look at an object's geometry and add the velocity and the fluid it's traveling through," Rodriguez said. "You put that into the program, and it outputs the required dimple pattern."

Monroe then 3D printed the nose cone. UNM's Lobo Launch team, meanwhile, created the accompanying rocket and a smooth nose cone that was identical, minus the dimples.

Due to the COVID-19 pandemic, and the fact that the Lobo Launch team needed their rocket for the upcoming Spaceport America Cup competition, launching the rocket became a challenge.

It was finally put to the test in November and December of 2022.

"We were overjoyed when we found that the dimpled rocket had 22% less frictional drag compared to a smooth rocket," Rodriguez said. "At its peak, it reduced drag by 39.1%. So that's less fuel you need, and it produces less CO2, which is good for the environment."

Monroe successfully defended his thesis in the fall of 2023, earning the coveted "pass with distinction."

"It's been really neat to be part of this research," Monroe said. "To be part of something that could be used in the real world. When we look at the day and age that we are in, as far as space exploration, the effect this could have on energy savings is really significant."

How dimples work
So how do these dimples work?

"They generate turbulence, redistribute the turbulent energy, accelerate the flow in the dimpled regions, and reduce the boundary layer thickness," Rodriguez said.

He said a good analogy is an Olympic diving competition: "The diver who plunges into the water with the smallest splash gets extra points because only a very small amount of resultant water flow is generated by the more aerodynamic dive. The same occurs with dimples. They generate a flow pattern that is so aerodynamic that only small, disorderly flow currents are generated by the dimpled objects -- a gold medal dive."

Bring in the Mustang

Computer simulation shows how dimples affect drag. [Credit: Courtesy of Sal Rodriguez]

 

 

However, it's not just rockets that can benefit from this dimpling. Rodriguez has been exploring other ways to use dimples. In a little-known project with Bobby Unser Junior, he dimpled the hood of a Ford Mustang.

"It was so exciting because he was so enthused about racing and race cars," Rodriguez said of Unser. "I told him about my copyright and that I could dimple his sports car and make it go faster. He was very excited."

Rodriguez used his program to find the ideal size and placement of the dimples on the car's hood. Like the rocket, the results were significant. They showed a minimum 25% reduction in airflow drag compared to a car with no dimples. The experiment also included a car with tennis ball-sized dimples to prove that while all dimpling helps, precision with dimples is key.

Whether consumers would be okay with dimples on their car was another question the pair hoped to explore. Unfortunately, Unser died before the project went any further.

It's not just in aerodynamics
One of Rodriguez's latest projects is using dimples in heat transfer.

With the help of funding from the New Mexico Small Business Assistance Program, he has built an apparatus that shows how dimples can speed up the heating process.

A box with three sides of plexiglass and one side of dimpled aluminum is filled with water and then connected to a heat source.

"We put beads and dye in there to see how they move along the dimples," Rodriguez said. "We witnessed them accelerate, twice the velocity than outside the dimple area, and with increased turbulence." That proves that the dimpling enhances heat transfer.

Click this thumbnail to watch a heat transfer experiment using dimples. [Credit: Sandia]

 

 

Rodriguez says this technology can be transformed into a solar water heater. That could be life-changing for places that don't have easy access to electricity, such as Indian reservations or developing nations. It has already caught the attention of a company in another country.

The road ahead
Rodriguez's dimpling work is far from done. His team recently submitted a non-provisional patent application for dimpled wind turbines.

"We can apply to rockets, aircraft, cars, electronic vehicles, submarines, drones, and wind turbine blades," Rodriguez said. "We can extend the distance that they can travel or the energy they harvest. Dimpling will have a beneficial effect on aerodynamics. We will be able to design rockets that can carry a much heavier payload in space and make space exploration more affordable by at least 10 to 20 percent."

Sal Rodriguez, right, looks on as technologist Robin Sharpe injects dye into the dimpled model they built, showing the way dimples increase heat transfer in water. [Credit: Photo by Craig Fritz]

 

 

While his work is very practical, Rodriguez also hopes to have a little fun with it. He's already dreaming up new ideas. "Maybe we could do speedboats, jet skis, even frisbees," Rodriguez said.

Read more Sandia technical developments at sandia.gov/news/.

Source: Sandia

Published January 2024

Rate this article

[Can golf ball dimple tech help rockets fly better?]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2025 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy