January 28, 2025 Volume 21 Issue 04

Mechanical News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Sound-dampening foam with an eco edge

BASF has introduced Basotect® EcoBalanced melamine foam, a material that helps to reduce the product carbon footprint (PCF) of many sound-absorption applications in the transportation, building, and construction industries. This easy, drop-in solution has an up to 50% lower PCF than the respective BASF standard grades but demonstrates the same material performance. Applications include engine covers, wall and ceiling sound absorbers, HVAC parts, and air cleaners.
Learn more.


How to select a linear bearing pillow block

When it comes to choosing a pillow block style to help provide a secure foundation for a rotating shaft, the engineers at Lee Linear suggest using something called "P.O.S.T.L.U.D.E.S" as your guide: Precision, Orientation, Speed, Travel, Load, Unknowns, Duty Cycle, Environment, and Safety. Learn all about pillow block types, construction, and applications.
Read the Lee Linear blog.


Engineer's Toolbox: 9 considerations for specifying a slewing ring bearing

In applications that require a bearing to support a structure while it rotates (e.g., cranes, radar, tank turrets), premature bearing failure can put people and equipment at risk. While slewing ring bearings have proven themselves countless times in such applications, designers must consider many factors when specifying them. According to engineers at Kaydon, the bearing's support structure, mounting (including bolt strength, tensioning, and hole patterns), installation, and even storage are all factors in a bearing's success or failure.
Read the full article.


Engineer's Guide to Low Outgassing Adhesives

Learn all about low outgassing adhesives from the masters of making things stick at Master Bond. Outgassing from adhesives can pose significant challenges -- especially in the aerospace, electronic, and optical industries. "The Engineer's Guide to Low Outgassing Adhesives" ebook covers the ASTM E595 standard, initially developed by NASA, and guides you through the adhesive selection process. No registration required.
Learn more.


How it's made: Precision lead screw assemblies

Discover what makes the integrated lead screw systems from PCB Linear a step above the rest. From CNC manufacturing and sophisticated parts fine-tuning to PTFE coatings, innovative anti-backlash nut development with Constant Force Technology, and high-end motors to top it all off, this presentation is full of useful information about PCB Linear production and technology. We bet you will learn something new.
View the video.


Fastest large-format SLA 3D printer in the world

Built on Formlabs' next-generation Low Force Display print engine, the new Form 4L SLA 3D printer delivers unmatched reliability with a 99% print success rate compared to other SLA 3D printers. These benefits, combined with a build volume nearly 5x the size of Form 4, allow Form 4L users to solve big problems and print smaller parts at high volume. Large-scale prints finished in under six hours.
Learn more.


Adjustable monitor mounts that hold, tilt, and more

AV Monitor Mounts from Southco allow intuitive and ergonomic display positioning, enabling the operator to grab and move the screen without significant effort. These mounts also hold the screen in any position securely and resist unwanted movement when in use. Constant-torque functionality provides an arm that can withstand strong touch forces, vibration, and heavy loads. Lots of options.
Learn more.


Keypad teardown and design insights with Autodesk and Xometry

Take a deep dive into the second revision of the macro keypad developed for Autodesk University's Factory Experience 2024 in this exclusive, on-demand webinar hosted by Xometry's Greg Paulsen and Autodesk Fusion's Jonathan Odom. This presentation features a live teardown of the keypad, showcasing how the design team addressed challenges and elevated the product. No registration required.
Watch this Xometry webinar at your convenience.


Cool Tools: Portable joystick videoscope

The USAVS J-4-1500 Joystick Videoscope from USA Borescopes combines high-performance tech with user-friendly features. This advanced 4-mm-diameter scope is designed to elevate the inspection process for professionals across various industries, including automotive, aerospace, and manufacturing. One of its standout features is the responsive joystick-controlled articulation, which allows users to easily navigate the 1.5-m-long probe in multiple directions to acquire high-res images.
Learn more.


Tube cutting and bending design guide: Xometry

Xometry's no-cost tube design guide offers design tips and tricks for laser-cut tube parts, including: minimums, tolerances, and sizes. The guide also covers important rules for mandrel tube bending, such as tolerancing, distance between bends, bend center line radius, types of bends to avoid, and more. Incredibly handy. If you need parts, Xometry can help with that too. It's easy to get a quote.
Learn more.


SPEE3D develops ultra-corrosion-resistant alloy
-- a game-changer for maritime additive manufacturing

Australian manufacturer SPEE3D has developed two grades of an ultra-corrosion-resistant Nickel Aluminum Bronze alloy that are compatible with its Cold Spray Additive Manufacturing technology. The powder material is a game-changer for maritime OEMs and the U.S. Navy, as it will help with supply chain delays and keep critical maritime systems operational.
Read the full article.


Achieve higher loads with a round wire Wave Spring

Wavo Springs are produced from round-section wire to provide higher loads while maintaining the accurate loading found in wave springs. As an alternative to Belleville Springs, the Wavo provides similar loads but with an accurate, predictable spring rate. Available in carbon and stainless steel from stock, sizes range from 1/2" to 6" diameters. Free samples are also available!
Learn more.


Conveying and guiding: One-stop shop for components

JW Winco has expanded its range of conveying and guiding components with additional practical elements designed for common industrial applications, providing everything needed -- from guides and rails to brackets and feet -- for constructing unmotorized conveyor lines using standard parts.
Read the full article.


Why hybrid bearings are becoming the new industry standard

A combination of steel outer and inner rings with ceramic balls or rollers is giving hybrid bearings unique properties, making them suitable for use in a wide range of modern applications. SKF hybrid bearings make use of silicon nitride (twice as hard as bearing steel) rolling elements and are available as ball bearings, cylindrical roller bearings, and in custom designs. From electric erosion prevention to friction reduction and extended maintenance intervals, learn all about next-gen hybrid bearings.
Read the SKF technical article.


What are carbon composite bellows springs?

The Carbon Composite Bellows Spring (CCBS) from MW Components is a system of carbon fiber elements that combine to work as a high-performance, lightweight, and design-flexible compression spring meant to replace coil springs or metallic Belleville disc springs. A functional spring is made from several individual elements paired and joined to make a stack. The stack spring rate is determined by the number of elements, the base rate of each element, and their series or parallel orientation in the stack. Applications include motorsports, aerospace, and high-performance activities.
Learn more.


Wearable cooling pump drops temperatures by 16 degrees -- more at source of heat

A new UCLA-developed cooling device is made of six thin layers of nanotube-coated polymer films about one-quarter of an inch thick. [Credit: UCLA Soft Materials Research Laboratory/Courtesy of UCLA]

 

 

 

 

UCLA materials scientists have developed a compact cooling technology that can pump away heat continuously using layers of flexing thin films. The design is based on the electrocaloric effect, in which an electric field causes a temporary change in a material's temperature.

In lab experiments, the researchers found that the prototype could lower ambient temperatures of its immediate surroundings by 16 degrees Fahrenheit continuously and up to 25 F at the source of the heat after about 30 seconds.

Detailed in a paper published in the journal Science, the approach could be incorporated into wearable cooling technology or portable cooling devices.

"Our long-term goal is to develop this technology for wearable cooling accessories that are comfortable, affordable, reliable, and energy efficient -- especially for people who work in very hot environments over long hours," said principal investigator Qibing Pei, a professor of materials science and engineering at the UCLA Samueli School of Engineering. "As average temperatures continue to rise with climate change, coping with heat is becoming a critical health issue. We need a variety of solutions to the problem, and this could be the basis for one."

The experimental material is composed of a circular stack of six thin polymer films, just under an inch in diameter and one-quarter of an inch thick for the entire stack. Each layer is coated with carbon nanotubes on both sides. The resulting material is ferroelectric, which means it changes shape when an electric field is applied.

When the device's electric field is switched on, the stacked layers compress against each other in pairs. When the electricity switches off, the stacked pairs come apart and then press against the other neighboring layers. As this alternating process repeats itself, the self-regenerative, accordion-like cascading action continually pumps heat away, layer by layer.

"The polymer films use a circuit to shuttle charges between pairs of stacked layers, which makes the flexible cooling device more efficient than air conditioners," said Hanxiang Wu, one of the study's co-lead authors and a postdoctoral scholar working in Pei's lab.

The device's polymer films expand and contract like an accordion to pump heat away from a source, cooling it by about 16 F. [Credit: UCLA Soft Materials Research Laboratory/Courtesy of UCLA]

 

 

 

 

Traditional cooling technology relies on air conditioning and refrigeration, which require vapor compression that not only consumes a great deal of energy but also uses carbon dioxide as a coolant. The new device is a simpler design that does not require greenhouse-gas-generating coolants or liquids. It operates solely with electricity, which can be sustainable when generated through renewable energy sources such as solar panels.

"This cooling device integrates advanced materials with an elegant mechanical architecture to deliver energy-efficient cooling by embedding functionality directly into its structure, reducing complexity, energy use, and computational demands," said the study's co-lead author Wenzhong Yan, a postdoctoral scholar in mechanical engineering.

Pei holds a joint faculty appointment in the Department of Mechanical and Aerospace Engineering and runs the Soft Materials Research Laboratory at UCLA. He and his team have been researching electrocaloric cooling technologies designed to drop enough temperatures for real-world applications.

"Because we can use thin flexible films, electrocaloric cooling would be most ideal for next-generation wearables that can keep us cool under strenuous conditions," Pei said. "It could also be used to cool electronics with flexible components."

Sumanjeet Kaur, a materials staff scientist at Lawrence Berkeley National Laboratory and leader of its Thermal Energy Group, is another author of the study and a co-inventor on the patent application UCLA has filed for this invention. "The potential of efficient wearable cooling in driving energy savings and mitigating climate change cannot be overstated," Kaur said.

Source: UCLA

Published January 2025

Rate this article

[Wearable cooling pump drops temperatures by 16 degrees -- more at source of heat]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2025 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy