![]() |
February 11, 2025 | Volume 21 Issue 06 |
Manufacturing Center
Product Spotlight
Modern Applications News
Metalworking Ideas For
Today's Job Shops
Tooling and Production
Strategies for large
metalworking plants
ProtoShield sheets from Tech-Etch are depth-etched with a checkerboard pattern for folding, so they can be easily formed into many diverse configurations. In the product-development stage, fully functional shields can be created in minutes with just a pair of scissors and a straight edge for folding. Offered in two sizes: standard (.25-in. squares) and metric (5-mm squares). Both versions are solderable and corrosion resistant due to nickel silver material. Shield prototypes can be directly soldered to the board, or shield clips can be used for easy mounting. Samples available.
Learn more.
Keysight Technologies has developed an optically isolated differential probing family dedicated to enhancing efficiency and performance testing of fast-switching devices such as wide-bandgap GaN and SiC semiconductors. Validation of floating half-bridge and full-bridge architectures commonly used in power conversion, motor drives, and inverters requires measurement of small differential signals riding on high common-mode voltages. This measurement can be challenging due to voltage source fluctuations relative to ground, noise interference, and safety concerns.
Learn more.
EXAIR's ATEX Cabinet Cooler® Systems deliver a powerful and affordable solution for keeping electrical enclosures cool in hazardous ATEX classified areas -- and they're now available in durable aluminum construction. Engineered for use in Zones 2 and 22, these coolers are UL tested, CE compliant, and meet stringent ATEX standards for purged and pressurized enclosures. With cooling capacities up to 5,600 Btu/Hr., ATEX Cabinet Coolers are ideal for preventing overheating in electrical cabinets. EXAIR offers a comprehensive lineup of systems.
Learn more.
Automation-Direct's Practical Guide to Program-mable Logic Controllers Handbook has been improved with tons of new need-to-know info, making it a more comprehensive guide to the world of PLCs. Besides covering the basics of PLC history, PLC hardware, and PLC software, this guide takes you deeper into the ever-changing world of PLC communication, the importance of feedback loops, cyber security, and many other areas that are a must-know for any PLC novice or seasoned automation professional.
Get this great resource today.
Get your customers to feel the difference your products make. TDK has released a development starter kit for fast haptics prototyping. It gives mechanical designers and engineers first impressions of the haptic feedback using PowerHap piezo actuators, shows how the mechanical integration works, and provides a reference design. Applications include automotive, displays and tablets, household appliances, vending machines, game controllers, industrial equipment, and medical devices.
Learn more.
Need precision fastening with ESD protection at the smallest torque levels? Mountz has you covered. The new FG Mini ESD Preset Torque Screwdriver is built for low-torque, high-precision tasks. Its compact design makes it ideal for tight spaces and small fasteners, while delivering the same reliable control and ESD protection users have come to expect from Mountz. Two models available: FG25z (3 to 25 ozf.in, 2 to 17.7 cN-m) and FG50z (20 to 50 ozf.in, 14.1 to 35.3 cN-m).
Learn more.
Automation-Direct has added Laumas precision-engineered load cells, transmitters, and accessories that deliver reliable performance in industrial weighing and force measurement applications. The FCAL series high-precision bending beam load cells are ideal for low- to mid-capacity systems. CTL series load cells are designed for both tension and compression, with excellent linearity. The CBL series low-profile compression load cells are perfect for space-limited applications. Laumas load cell transmitters are available too for precise monitoring and control. Very good pricing.
Learn more.
Improper grounding can create problems in data logging, data acquisition, and measurement and control systems. One of the most common problems is known as ground loop feedback. Experts at CAS DataLoggers run through five ways to eliminate this problem.
Read the full article.
According to Automation-Direct, "Braking resistors don't actually provide braking directly -- rather, they allow a drive to stop a loaded motor faster." Why is this important? Protect your AC or DC drive system from regenerative voltage that can create an over-voltage fault on the drive -- especially with high inertial loads or rapid deceleration.
View the video.
Static electricity isn't just a nuisance; it's a serious threat to manufacturing efficiency, product integrity, and workplace safety. Unchecked static can lead to costly downtime, product defects, material jams, and even hazardous shocks to employees. If static is interfering with your processes, EXAIR's upgraded Model 7905 Digital Static Meter offers an essential first step in identifying and eliminating the problem. With just the press of a button, this easy-to-use, handheld device pinpoints the highest voltage areas in your facility, helping you diagnose static issues before they become a problem.
Learn more.
Modulating a laser beam's intensity distribution optimizes energy delivery to the process zone, resulting in better cutting speed, cut edge quality, and cut kerf geometry. Scientists in Belgium have come up with a new method that they say produces better cutting results.
Read the full article.
The new PLC CPI-PS10CM4 from Contec Co. is a compact embedded programmable logic controller (PLC) that is loaded with CODESYS, the world's most widely used software PLC. This product uses Contec's original single-board computer, which is based on Raspberry Pi's latest embedded module, the Compute Module 4 (CM4). By using the wide range of peripheral devices for Raspberry Pi, such as Contec's CPI Series, you can build various control applications in a PLC language that complies with the IEC 61131-3 international standard.
Learn more.
Saelig Company has introduced the Sensor Technology SGR525/526 Series Torque Sensors to provide precision torque monitoring that is critical for performance and safety. The square drive design (for applications with non-cylindrical shafts) allows for seamless integration into power tools, test rigs, industrial machinery, and precision fastening applications, ensuring superior torque measurement without the need for additional adapters or modifications. The SGR525 offers torque measurement only, while the SGR526 provides torque, speed, and power measurement using a 360-pulse-per-revolution encoder. Industries include automotive, aerospace, manufacturing, and research and development.
Learn more.
Wider conveyor belts operating at higher speeds are now commonplace in modern logistics. To keep up, SVS-Vistek is offering a cost-effective alternative to multi-camera systems with its fxo901CXGE 10-GigE color camera featuring the Sony IMX901-AQR wide-aspect global shutter 16.4-megapixel CMOS sensor. Unlike standard cameras, this unit captures targets in a wide field of view while maintaining high resolutions. The 4:1 horizontal aspect ratio allows one fxo901CXGE to replace an entire multi-camera system, removing the need for image synchronization.
Learn more.
The FLIR TG268 is a next-generation thermal imager that provides professionals in the utility, manufacturing, electrical, automotive, and industrial sectors with a lightweight, handheld, affordable condition monitoring tool. Latest enhancements include higher temperature ranges, improved resolution, and larger data storage capacity. Go beyond the restrictions of single-spot IR thermometers to view and evaluate hot and cold spots that may signify potentially dangerous issues. Accurately measure temps from -25 to 400 C. Native thermal images improved with Super Resolution upscaling.
Learn more.
UW ECE and Physics Professor Arka Majumdar and his students have collaborated with Princeton University to build a new type of compact camera engineered for computer vision. Their prototype (shown above) uses optics for computing, significantly reducing power consumption and enabling the camera to identify objects at the speed of light. [Credit: Photo by Ilya Chugunov, courtesy of Princeton University]
By Wayne Gillam, University of Washington Department of Electrical & Computer Engineering (UW ECE)
Collaboration can be a beautiful thing, especially when people work together to create something new. Take, for example, a longstanding collaboration between Arka Majumdar, a University of Washington (UW) professor in electrical and computer engineering and physics, and Felix Heide, an assistant professor of computer science at Princeton University. Together, they and their students have produced some eye-popping and groundbreaking research, including shrinking a camera down to the size of a grain of salt while still capturing crisp, clear images.
Now, the pair is building on this work, recently publishing a paper in Science Advances that describes a new kind of compact camera engineered for computer vision -- a type of artificial intelligence that allows computers to recognize objects in images and video. Majumdar and Heide's research prototype uses optics for computing, significantly reducing power consumption and enabling the camera to identify objects at the speed of light. Their device also represents a new approach to the field of computer vision.
"This is a completely new way of thinking about optics, which is very different from traditional optics. It's end-to-end design, where the optics are designed in conjunction with the computational block," Majumdar said. "Here, we replaced the camera lens with engineered optics, which allows us to put a lot of the computation into the optics."
"There are really broad applications for this research, from self-driving cars, self-driving trucks, and other robotics to medical devices and smartphones. Nowadays, every iPhone has AI or vision technology in it," added Heide, who was the principal investigator and senior author of the Science Advances paper. "This work is still at a very early stage, but all of these applications could someday benefit from what we are developing."
Heide and his students at Princeton provided the design for the camera prototype, which is a compact, optical computing chip. Majumdar contributed his expertise in optics to help engineer the camera, and he and his students fabricated the chip in the Washington Nanofabrication Laboratory. The UW side of this multi-institutional research team included Johannes Froech, a UW ECE postdoctoral scholar, and James Whitehead (Ph.D. '22), who was a UW ECE doctoral student in Majumdar's lab when this research took place.
Replacing a camera lens with engineered optics
Instead of using a traditional camera lens made out of glass or plastic, the optics in this camera relies on layers of 50 meta-lenses -- flat, lightweight optical components that use microscopic nanostructures to manipulate light. The meta-lenses also function as an optical neural network, which is a computer system that is a form of artificial intelligence modeled on the human brain.
Instead of using a traditional camera lens made of glass or plastic, this camera's optics rely on layers of 50 meta-lenses -- flat, lightweight optical components that use microscopic nanostructures to manipulate light. These meta-lenses fit into a compact, optical computing chip (shown above) fabricated in the Washington Nanofabrication Lab. [Credit: Photo by Ilya Chugunov, courtesy of Princeton University]
This unique approach has a couple of key advantages. First, it's fast. Because much of the computation takes place at the speed of light, the system can identify and classify images more than 200 times faster than neural networks that use conventional computer hardware, and with comparable accuracy. Second, because the optics in the camera rely on incoming light to operate, rather than electricity, the power consumption is greatly reduced.
"Our idea was to use some of the work that Arka pioneered on metasurfaces to bring some of those computations that are traditionally done electronically into the optics at the speed of light," Heide said. "By doing so, we produced a new computer vision system that performs a lot of the computation optically."
VIDEO: Spatially varying nanophotonic neural networks. [Credit: Princeton Computational Imaging Lab]
Majumdar and Heide said that they intend to continue their collaboration. Next steps for this research include further iterations, evolving the prototype so it is more relevant for autonomous navigation in self-driving vehicles. This is an application area they both have identified as promising. They also plan to work with more complex data sets and problems that take greater computing power to solve, such as object detection (locating specific objects within an image), which is an important feature for computer vision.
"Right now, this optical computing system is a research prototype, and it works for one particular application," Majumdar said. "However, we see it eventually becoming broadly applicable to many technologies. That, of course, remains to be seen, but here, we demonstrated the first step. And it is a big step forward compared to all other existing optical implementations of neural networks."
"Spatially varying nanophotonic neural networks" was published Nov. 8 in Science Advances.
Published February 2025