June 13, 2017 Volume 13 Issue 22

Electrical/Electronic News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Buyers Guide

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Cool Tools: Wireless pocket oscilloscope

Saelig has introduced the IkaScope WS200, a pen-shaped battery-powered wireless oscilloscope that streams captured signals to almost any Wi-Fi-connected screen. This tool offers a 30-MHz bandwidth with its 200-MSa/s sampling rate, and the maximum input is +/-40 Vpp. It provides galvanically isolated measurements even when a USB connection is charging the internal battery. The IkaScope WS200 will work on desktop computers (Windows, Mac, and Linux) as well as on mobile devices like tablets or smartphones (iOS and Android Q4 2017). Application software can be downloaded for whichever platform is needed.
Click here to learn more.


Multi-axis robotic controller

Aerotech’s HEX RC is a 6-axis motion controller ideal for controlling robotic systems like hexapods. It is 4U rack-mountable and compatible with the Automation 3200 (A3200) motion platform. A high-performance processor provides the intense computing power needed to run up to 32 axes, perform complex, synchronized motion trajectories, manipulate I/O, and collect data at high speeds. This unit features 6 axes of drives capable of controlling any combination of brush, brushless, or stepper motors (both current loop and servo loop closures). An optional 6-axis jog pendant permits easy, manual control of the positioning system.
Click here to learn more.


Using natural refrigerants in cooling system design

The use of natural refrigerants is on the rise, creating a new set of challenges for cooling system design. You can optimize safety and efficiency by understanding the implications of the trend on component design and selection. This new white paper from Sensata Technologies provides an overview of methods used to mitigate these technical challenges as well as a look at some of the HVAC and refrigeration hardware and safety technologies required, especially pressure switches and pressure sensors.
Read the white paper (no registration required).


Compact touchless position sensors

TFD Series touchless linear position sensors from Novotechnik provide wear-free operation in tight spaces for measurement of short stroke lengths. They use a magnetic position marker to provide a touchless measurement range of 0 to 14, 24, or 50 mm (depending on model). These sensors make measurements through air and non-magnetic materials. Applications include textile machinery, packaging machinery, sheet metal machinery, medical applications, marine, mobile engine management systems, industrial trucks, construction machinery, and agricultural and forestry machinery.
Click here to learn more.


Connectors: High-current DC power in compact design

Amphenol Industrial Products Group now offers a versatile connection system that distributes high-current DC power in a compact design. Designed to connect wire to wire, wire to board, and busbar terminations, the Amphe-PD series distributes higher currents with less heat than similar-sized connectors on the market. Ideal for use in datacenter equipment, robotics, and industrial automation, the Amphe-PD series connectors offer wire terminations ranging from 12 AWG to 4 AWG.
Click here to learn more.


Cool Tools: Wireless digital micrometer

The new 40 EWRi is the latest addition to Mahr's Integrated wireless family of products, including digital calipers, indicators, and depth gages, which allow users to measure faster, more easily, and more reliably. Measurement data is transferred to an i-Stick on a computer without any interfering data cables, and MarCom software makes data acquisition simple: Just take a measurement and transmit measuring data directly into MS Excel or via a keyboard code into any Windows program or existing SPC application.
Click here to learn more.


EMI shielding gaskets offered in many materials

Tech-Etch offers EMI shielding D-Connector gaskets in a wide variety of materials. Five standard sizes of 9-, 15-, 25-, 37-, and 50-pin configurations are available in Stainless Steel; Beryllium Copper; X-, Y-, Z-axis Conductive Foam; and Metalized Fabric consisting of a metalized fabric over a polyurethane foam core. Additionally, four conductive elastomers fill out the D-Connector product line: Series 1000 Supershield silicone elastomer filled with conductive metal particles; Series 4000 Multishield composite material environmental seal; Series 5000 Monoshield for applications where the gasket is limited to 0.02-in. thickness and gap irregularities do not exceed 0.003 in.; and Series 5500 Weaveshield composite (woven aluminum wire screen impregnated with either a neoprene or silicone elastomer), and EMI shielding and pressure seal gasket material used for very small gaps. Custom gaskets can be manufactured.
Click here to learn more.


Wi-Fi high-temp air flow monitor for hazardous environments

Wind Probe LLC has introduced a high-temp air flow monitor Wi-Fi instrument for large- and small-size ovens. This instrument combines the latest advances in materials, process control, and microprocessor technology and hardware and software design. The model 200 is small, lightweight, and suitable for harsh environments seen in high-temperature curing ovens. One of the most exciting markets includes air flow monitoring at 200 deg C in carbon composite honeycomb ovens. The software permits selecting data rates and running averaging in both temperature and air flow. The software is easily updated, and reference tables can be uploaded using the RS-232 communications interface.
Click here to learn more.


New Canfield Connector magnetic sensor adds reliability and safety to vehicles, machines, systems

The rugged Series CS Cylindrical Threaded Mount Sensor from Canfield Connector senses magnetism and triggers action in a variety of applications. The sensor’s first field application equips a cement truck, where it picks up a signal from a magnet mounted to the mixing drum and controls how much the drum rotates. In an industrial automation setting, the sensor can detect the closure of a door and allow a machine to run, enhancing safety. The CS Sensor can also react to magnetism that identifies changes in liquid levels or positions of parts in a wide range of vehicles, machines, and systems.
Click here to learn more.


Industrial cybersecurity for small and medium-size businesses

The International Society of Automation, at the request of the U.S. Department of Homeland Security, has developed a white paper designed to help small and medium-sized businesses (SMBs) recognize their vulnerability to industrial cyberattack and forge an effective cybersecurity plan based on established standards and practices. “Industrial Cybersecurity for Small and Medium Sized Businesses: A Practical Guide” leverages ISA’s in-depth knowledge of industrial automation and control systems (IACS) and subject-matter expertise in industrial cybersecurity.
Get this valuable resource.


SNAP-TOP fasteners hold printed circuit boards securely without mating screws

New PEM SMTSS ReelFast SNAP-TOP standoff fasteners from Penn-Engineering hold printed circuit boards securely in assemblies without requiring mating screws or other loose threaded hardware to complete attachment. These unthreaded standoffs promote streamlined production by easily installing in boards in the same manner and at the same time as other surface-mount components prior to the automated reflow solder process. They ultimately enable precise and reliable mounting and spacing of boards using less hardware and fewer operations.
Click here to learn more.


FUTEK mini load cells take on Shark Week

On the Discovery Channel’s special “Shark School with Michael Phelps” last week, the team engineers at Peacock Productions used three FUTEK Donut/Through Hole load cells as well as FUTEK instrumentation to test a great white shark’s bite force. The three LTH500 Donut/Through Hole Load Cells were placed in a special mold that mimicked the shark's prey. By combining the IHH500 Digital Hand Held Display and IAC200 4 Channel Summing Junction Box with the load cell setup, the production team was able to accurately measure the force of the great white shark's bite, which registered at 10,000 Newtons -- equivalent to a car crashing into a wall at 100 mph! The force reading was unprecedented; it was the first shark bite to register above 6,000 Newtons.
Check out the FUTEK setup for the Discovery Channel's "Shark School."
Watch the Discovery Channel's bite tester in action.


Everything you wanted to know about heatsinks

How well a heatsink performs depends on particular aspects of its design, such as the thermal conductivity of the material it's made of, its overall dimensions, fin type used, airflow rate, and system. A theoretical model can be used to predict performance, or it can be measured experimentally. But because of the complex 3D nature of today’s electronic systems, engineers often use the numerical method via computational fluid dynamics (CFD) to determine the thermal performance of a heatsink before prototyping. This informative blog post from Mentor features two on-demand webinars to run through the basics of heatsink design and considerations.
Read the Mentor blog on heatsink design.


Mike Likes: Unit Conversion Tool

Convert popular spring units such as force or retaining ring thrust capacities into metric units with Smalley’s engineering tools. Convert units such as mass and weight, angular measurements, velocities, temperatures, pressures and densities, and more.
Click here to learn more. You should bookmark this one.


Mike Likes: TI doubles power density with motor control

Texas Instruments recently introduced two new device families that help reduce size and weight in motor drive applications. When used together, the brushless DC (BLDC) gate drivers and power blocks require half the board space of competing solutions. An 18-V compact BLDC motor reference design demonstrates how these components can drive 11 W/cm3 power and enable engineers to jump start their designs for smaller, lighter weight power tools, integrated motor modules, drones, and more.
Read the full article.


'Expert in a suitcase' aims to cut power bills 10% in small commercial buildings

The Sensor Suitcase is licensed by two companies to make energy efficiency easier. [Credit: Andrea Starr/PNNL]

 

 

The knowledge and expertise of a seasoned energy-efficiency professional has been packed into a high-tech suitcase.

The Sensor Suitcase is a portable case that contains easy-to-use sensors and other equipment that make it possible for anyone to identify energy-saving opportunities in small commercial buildings. The automated and reusable system combines hardware and software in one package so its users can identify cost-effective measures that save small commercial buildings about 10 percent on their energy bills.

Jointly developed by two Department of Energy labs, Pacific Northwest National Laboratory and Lawrence Berkeley National Laboratory, the Sensor Suitcase has been licensed by two companies that plan to provide products or services based on the technology. The licensees are GreenPath Energy Solutions and Cultural Quotient.

"Most small commercial building owners believe it costs too much to make their facilities significantly more energy efficient," said scientist Michael Brambley, who led PNNL's development team. "But the Sensor Suitcase system can change that. It helps someone with minimal training collect and automatically process building data, which the system uses to generate specific recommendations to improve energy efficiency. The U.S. could reduce its national energy costs by about $5.1 billion if all small commercial buildings used this technology."

The Sensor Suitcase packs the knowledge of a seasoned energy-efficiency professional into a high-tech suitcase, which contains easy-to-use sensors and other equipment that make it possible for nearly anyone to identify energy-saving opportunities in small commercial buildings. PNNL research associate Eric Gonzalez is shown here using a tablet computer to program the Sensor Suitcase's sensors. [Credit: Andrea Starr/PNNL]

 

 

 

 

Implementing energy-efficiency measures in small commercial buildings has been notoriously difficult, said mechanical engineer Jessica Granderson, who led Berkeley Lab's development team.

"The real innovation is in the streamlining," said Granderson, who is also a deputy director of Berkeley Lab's Building Technology and Urban Systems Division. "It's kind of like the 'for dummies' version of how to identify improvements in your building. Instead of hiring a professional engineer to conduct a full energy evaluation, you could get just about anyone to do it."

The Sensor Suitcase is designed to reduce energy use in existing buildings by finding ways to improve the way they operate, a practice energy-efficiency professionals call "retro-commissioning." Large commercial buildings often have the resources needed for retro-commissioning, while smaller buildings with 50,000 sq ft or less don't. PNNL and Berkeley Lab developed the Sensor Suitcase to overcome that hurdle.

How it works
Inside the suitcase sit 16 pocket-sized sensors that can measure three things: temperature, whether lights are on or off, and how a heating and cooling system is operating. Users follow clear instructions from the Sensor Suitcase's operations software, which runs on a separate tablet, to install sensors inside a building.

About a month later, users gather the sensors and return them to the suitcase, which users then connect to a personal computer so they can transfer the collected energy data. The system's unique analytical software is used to automatically crunch the sensor data, eliminating the need to hire a professional to manually plot, inspect, and interpret data.

PNNL research associate Eric Gonzalez is shown placing sensors from the Sensor Suitcase near a thermostat and lights in an office building. [Credit: Andrea Starr/PNNL]

 

 

 

 

The final result is a report that identifies problems (such as excessive lighting), recommends low- and no-cost ways to fix problems (such as installing occupancy sensors that turn lights on only when a room is being used), and provides estimated cost savings for addressing each problem.

Improvements
The Sensor Suitcase system focuses on eight of the most common and cost-effective areas to improve energy efficiency in small commercial buildings. As a result, it can help building owners save about two-thirds of the energy that can be saved with the traditional approach to retro-commissioning, which requires the hands-on labor of several energy-efficiency professionals, who are often engineers. Conducting a traditional retro-commissioning assessment takes six months or longer, while doing the same assessment with a Sensor Suitcase takes four to six weeks and costs about a third of traditional retro-commissioning services.

Small building owners can buy and use the Sensor Suitcase themselves, but it will likely be more practical for them to hire an outside company that provides services based on the technology. Additionally, utilities could lend the technology to commercial building-owning customers or otherwise encourage its use. Though the Sensor Suitcase is intended for small commercial buildings, it could also be used to supplement energy retrofits at large commercial buildings.

Heading to market
GreenPath Energy Solutions of Orlando, FL, a provider of energy-efficient building solutions, will offer both a product and services with the Sensor Suitcase technology. The company helps facility managers and building owners control their operational, energy, and facility costs by providing energy auditing, retro-commissioning, and software solutions. GreenPath plans to market its product and services to federal, state, and local governments through its GSA Schedule contract with the General Services Administration.

Cultural Quotient of Arlington, VA, will also offer a product based on the technology. The company will make and sell its product as a partner with the manufacturing firm Zepher, Inc., of Bingen, WA. CQ Corporation is also partnered with the Chicago-based nonprofit Invent2026 to sell CQ's Sensor Suitcase-based product to local and state government entities in the Midwest, as many small businesses lease or occupy local government-owned buildings.

Both licenses are non-exclusive, meaning the Sensor Suitcase technology is also available for other companies to license. Those interested in learning more about a license can contact Jenn Lee at PNNL (Jennifer.Lee@pnnl.gov).

PNNL and Berkeley Lab jointly developed the Sensor Suitcase concept, with PNNL focusing on the technology's hardware and tablet software and Berkeley Lab focusing on its analytics software. DOE's Oak Ridge National Laboratory helped create the technology's sensors for its second prototype. The technology's development was supported by DOE's Office of Energy Efficiency and Renewable Energy.

Source: Pacific Northwest National Laboratory

Published June 2017

Rate this article

['Expert in a suitcase' aims to cut power bills 10% in small commercial buildings]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:

Copyright © 2017 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy