July 10, 2018 Volume 14 Issue 26

Motion Control News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Buyers Guide

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Linear motion catalog and design guide 2018

Haydon Kerk Motion Solutions, a business unit of AMETEK Advanced Motion Solutions, announces the release of its new Catalog and Design Guide, revised for 2018 to illustrate a wide range of products engineered for use as building blocks in sophisticated linear motion assemblies. It is divided into three major sections: 1) Precision lead screw and nut assemblies; 2) Linear actuators and stepper motor drives; and 3) Motorized and non-motorized linear rail systems. In addition to basic product information, each section includes a brief overview of the technology behind the products, part number construction, sizing charts, and product comparison charts. Applications include industrial automation and robotics.
Get your catalog (no registration required).


Integrated motors for high-throughput applications

Applied Motion Products introduces three models of StepSERVO Integrated Motors that provide cost-effective and high-speed motion control for high-throughput applications such as packaging and labeling, automated test and measurement, and automated assembly. With encoder feedback and advanced control loops that incorporate servo control, StepSERVO Integrated Motors provide a motion control system that operates faster, cooler, and quieter than competitive technology. The three model series (TSM, SSM, and TXM) support different options for step and direction, streaming commands, fieldbus communications, and stored Q programming for standalone operations.
Learn more.


Minimizing noise in electric linear motion systems

Under most circumstances, electric linear motion systems are quiet. They certainly don’t create the hissing and bang-bang noises associated with pneumatic systems. However, there’s another type of noise that comes with electric systems of all types: electrical noise or interference. The results can be anything from erratic movements to complete system failure. Patrick Hobart from Tolomatic runs through best practices for minimizing noise in these automation systems.
Read this insightful blog.


New 22-mm brushless servo motor packs a punch

MICROMO has launched the brand new FAULHABER 2264 BP4 series brushless dc servo motor, which is ideally suited for handheld tools and devices such as motorized surgical instruments, grippers and robotics, advanced prosthetics, aerospace applications, and even for electric pruning shears and motorized screwdrivers. At 22 mm in diameter, 64 mm in length, and weighing only 140 grams, the 2264 BP4 series delivers 59 mNm of continuous torque and reaches speeds up to 34,500 rpm. These impressive power and performance characteristics are possible due to a new segmented winding of the coil, which also improves the overall efficiency of the motor.
Click here to learn more.


New telescopic pillars for medical equipment support heavier loads

SKF CPMT telescopic pillars from SKF Motion Technologies for integration into surgical tables, procedure chairs, and similar medical equipment are complete plug-and-play systems that provide OEM designers with ideal technologies to equip healthcare facilities with reliable, safe, and virtually maintenance-free vertical motion solutions. CPMT telescopic pillars combine a low retracted height (320 mm or 12.6 in.) with a high stroke range (up to 600 mm or 23.6 in.) to improve accessibility for patients without compromising the extended height necessary for procedures. Other capabilities include a high load-carrying capacity (up to 6,000 N or 1,350 lb), as well as fast positioning speeds and the ability to access pre-set positions for overall clinical efficiencies.
Click here to learn more.


Tips for selecting linear actuators

Aaron Dietrich from Tolomatic runs through the main specifying considerations for electric actuators, citing their high performance, adaptability, low total cost of ownership, and easy integration. But what about accuracy and repeatability? Should you go with a rod-style actuator or a screw type? What kind of force should you expect if you are considering converting from hydraulic to electric actuation? Tolomatic also offers an extensive ebook to help with your decision-making if you need it.
Click here to learn more.


Universal Robots' CTO wins 'Nobel Prize of Robotics' for pioneering cobots

The Robotic Industries Association (RIA) recently announced Esben Østergaard as the recipient of the Engelberger Robotics Award. Østergaard spearheads the development of Universal Robots’ collaborative robot arms, representing one of the most significant technology breakthroughs coming out of the robotics community in decades.
Read the full article.


High-performance, high-load linear stages for industrial use

The new reference-class linear stages from precision nano-positioning global leader PI (Physik Instrumente) are available in ballscrew (L-417) and linear motor (V-417) configurations. Both cost-effective designs offer high resolution with improved tracking performance, smaller tracking error, and improved settling time. Applications include laser cutting, scanning, digital printing, electronics assembly and inspection, and more. The L-417 precision heavy-duty ball screw model easily accommodates a load capacity of 450 N on its 166-m width frame with a travel up to 813 mm. Powered by an ironless linear motor, the V-417 has a similar load capacity, width, and travel range.
Learn more about the L-417 ball screw model.
Learn more about the V-417 ironless linear motor model.


Motor-to-motor communication is 1-2 punch for machine builders

Combitronic™ is a propri-etary communica-tions protocol developed by Moog Animatics exclusively for its SmartMotor™. With Combitronic technology, any SmartMotor can read from, write to, and control any other SmartMotor, can act as the master, and can pass master control from one SmartMotor to another -- virtually eliminating the need for a PLC or other bus master. Combined with the CDS7 motor option, the technology allows a simple, single-cable, power and communications connection from motor to motor, giving the machine builder a simple, cost-effective way to build a network of Class 5 D-Style SmartMotor integrated servos.
Learn more.


Complete guided motion solutions from A to X-Y-Z

Bishop-Wisecarver invented and patented DualVee Motion Technology® more than 40 years ago to provide a solution for harsh environment applications where existing technologies were ineffective. DualVee® also proved excellent for long length, smooth motion, and low noise requirements. Today, Bishop-Wisecarver remains the recognized expert and the most trusted name in guide wheel technology, with the widest range of guide wheel-based linear motion products in the world.
Discover the benefits of Bishop-Wisecarver Guide Wheel Technology.


New rodless pneumatic cylinder supports compact machine design

Aventics now offers a new product for applications where the basic variants just won’t do the trick, but high-performance cylinders are too powerful. The new RTC-SB slide bearing version rounds off the pneumatics specialist’s RTC range of rodless cylinders. At the heart of the RTC-SB (slide bearing) is its oval piston shape. In relation to its size, it offers a very high load capacity. As a result, engineers can draft even more compact machine designs. Equipped with a lubrication-free slide bearing, the cylinder is maintenance-free and resistant to water, chemicals, and dirt. The slide play is optimally adjusted at the factory. Max speed is 6.5 m/sec (21.3 ft/sec). Maximum stroke is around 6,000 mm (21.6 ft).
Learn more.


Revolutionary new high-pressure electric pump system

High Pressure Equipment Co. (HiP), a subsidiary of Graco, introduces the eTensifer pump, the first-of-its-kind high-pressure electric pump system. The plug-and-play pump simply plugs into a wall outlet -- no need for an air compressor like other high-pressure pumps on the market. The portable, lightweight (only 46 lb) eTensifier will deliver hydraulic/liquid pressures to 36,500 psi with a smoother flow rate from zero to full pressure and a quiet electric motor. SmartControl™ technology allows for two operational modes: a traditional pressure knob for standard jobs and an industry-first pressure test mode. Another first is the ProConnect™ quick-connect system that allows users to switch out the Sprague pump lower.
Learn more.


World's smallest stepper motor is a big win

MICROMO presents the FAULHABER FDM 0620 series stepper motor. Measuring just 6 mm in diameter and 9.7 mm in length, including all components and connections, and with a 0.25-mNm holding torque rating, the FDM 0620 stepper motor series is small enough to fit in the most compact spaces for limitless applications. This micro stepper motor is also now available for purchase online with and without leadscrew options.
Click here to learn more.


Small brush DC motors drive handheld biopsy system

When developing an automated, handheld system capable of harvesting multiple samples with a single insertion to reduce patient tissue trauma and sampling time, this medical device manufacturer turned to MICROMO for compact and high-efficiency FAULHABER® brush DC motors.
Read the full article.


Compact angle sensor for robotics and other applications

See the robotics video demonstrating ease of programming and robotics application of certain angle sensors from Novotechnik. Novotechnik’s Vert-X 1600 Series of angle sensors (shown here) features easy mounting in tight spaces with a 16 mm diameter body. The sensors measure 0 to 360° with linearity ≤ ±0.3%, 14-bit resolution and repeatability to 0.1°. A variety of analog and digital output options are available.
View the video.


Autonomous vehicles are traveling the wrong road to safety, says computer science engineer

The current method of programming autonomous vehicles may not be safe, according to Aviral Shrivastava, a computer science associate professor in Arizona State University's Ira A. Fulton Schools of Engineering.

"Google, Uber, and others in the field are using humans to teach cars how to drive themselves," explained Shrivastava. "And that's the problem. They are learning from human drivers, all of whom are fallible, and the autonomous cars are in turn mirroring our unsafe driving behaviors."

Arizona State University Associate Professor Aviral Shrivastava's research involves developing technologies used in autonomous vehicle programming. [Credit: Photo by Ken Fagan/ASU Now]

 

 

 

 

Shrivastava is known on campus for his embedded computing course, which challenges students to engineer a self-navigating, obstacle-avoiding toy race car complete with GPS, a laser surveying system (LIDAR), an inertial measurement unit to calculate distances, and other sensing tools used in full-scale autonomous vehicles.

"The autonomous car industry is trying to walk a line between a human-like driving experience and guaranteed safety. At the moment, the familiarity of human-like driving is the norm and puts safety at risk," Shrivastava said.

A fatal accident involving a self-driving Uber vehicle and a pedestrian in March in Tempe, AZ, caused Uber to suspend its driverless operations in Arizona. Gov. Doug Ducey suspended Uber's tests of self-driving cars on Arizona roads, according to The Arizona Republic.

The video captured by the vehicle just before the March 18 accident illustrates the pedestrian was crossing the road, outside of a pedestrian walkway, in the dark. Lights from the car, streetlights, and ambient lighting failed to illuminate the pedestrian.

"Since the Uber car could not detect anything in the dark area, it did what a human driver might have done -- proceeded as though there was no one in the road. When the car's lights brought the woman suddenly into view, the car was travelling too fast to stop," Shrivastava said.

Shrivastava asserts that an autonomous vehicle should travel only at the speed at which it can stop before its range of vision ends -- the vehicle should be traveling slowly enough that it can instantly stop if an obstruction suddenly comes into view.

"When encountering a situation like that on Mill Avenue, a safety-focused vehicle's computer would assume there is an obstacle in the unlighted area and proceed accordingly, unlike humans who often assume that the path ahead is clear," he said.

Tempe Police Chief Sylvia Moir said, "I suspect, preliminarily, it appears that the Uber would likely not be at fault in this accident," concluding that regardless of whether the vehicle was driven by a human or autonomously, "it's very clear it would have been difficult to avoid this collision in any kind of mode based on how she came from the shadows right into the roadway."

However, expectations for a human driver and autonomous cars are very different, said Shrivastava.

"If a human driver causes an accident, it is unfortunate but normal," he said. "If an autonomous car causes an accident on the other hand, it is unacceptable, and it can shut down the whole autonomous car industry."

"As long as human behaviors are the foundation of automated driving technology, safety will continue to be an issue," Shrivastava added. "The priority for autonomous cars should be safety, rather than a human-like driving experience."

Shrivastava's research, funded by the National Institute of Standards and Technology and the National Science Foundation, focuses on cyber-physical systems designs -- mechanisms like autonomous vehicles in which a computer controls a physical system -- that guarantee the behavior of the systems.

"For example, we look at how can we build a car in which there is a guarantee that if an obstacle is detected, brakes will be applied within one millisecond," explained Shrivasta.

Recently, Shrivastava developed an algorithm for autonomous cars that promises to more than double the throughput of traffic intersections, "which are really the most important bottleneck in city traffic," he said. While the system will work only on roads that are fully autonomous, "the communications and calculations we've developed will enable autonomous cars to zip through intersections at full speed or with just a minor slow-down."

Source: Arizona State University

Published April 2018

Rate this article

[Autonomous vehicles are traveling the wrong road to safety, says computer science engineer]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:

Copyright © 2018 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy