March 24, 2020 Volume 16 Issue 12
 

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Rutgers-created robot uses artificial intelligence and imaging to draw blood, can 'steer' needle

This tabletop robotic device can accurately steer needles and catheters into tiny blood vessels with minimal supervision. [Image: Martin Yarmush and Alvin Chen]

 

 

Engineers at Rutgers University have created a tabletop device that combines a robot, artificial intelligence, and near-infrared and ultrasound imaging to draw blood or insert catheters to deliver fluids and drugs.

Their most recent research results, published in the journal Nature Machine Intelligence, suggest that autonomous systems like the image-guided robotic device could outperform people on some complex medical tasks.

Medical robots could reduce injuries and improve the efficiency and outcomes of procedures, as well as carry out tasks with minimal supervision when resources are limited. This would allow healthcare professionals to focus more on other critical aspects of medical care and enable emergency medical providers to bring advanced interventions and resuscitation efforts to remote and resource-limited areas.

"Using volunteers, models, and animals, our team showed that the device can accurately pinpoint blood vessels, improving success rates and procedure times compared with expert healthcare professionals, especially with difficult-to-access blood vessels," said senior author Martin L. Yarmush, Paul & Mary Monroe Chair & Distinguished Professor in the Department of Biomedical Engineering in the School of Engineering at Rutgers University-New Brunswick.

Getting access to veins, arteries, and other blood vessels is a critical first step in many diagnostic and therapeutic procedures. They include drawing blood, administering fluids and medications, introducing devices such as stents, and monitoring health. The timeliness of procedures can be critical, but gaining access to blood vessels in many people can be quite challenging.

Failures occur in an estimated 20 percent of procedures, and difficulties increase in people with small, twisted, rolling, or collapsed blood vessels, which are common in pediatric, elderly, chronically ill, and trauma patients, the study says. In these groups, the first-stick accuracy rate is below 50 percent and at least five attempts are often needed, leading to delays in treatment. Bleeding complications can arise when major adjacent arteries, nerves, or internal organs are punctured, and the risk of complication rises significantly with multiple attempts. When nearby blood vessels are inaccessible, more invasive approaches such as central venous or arterial access are often required.

The robotic device can accurately steer needles and catheters into tiny blood vessels with minimal supervision. It combines artificial intelligence with near-infrared and ultrasound imaging to perform complex visual tasks, including identifying the blood vessels from the surrounding tissue, classifying them and estimating their depth, followed by motion tracking. In other published work, the authors have shown that the device can serve as a platform to merge automated blood drawing and downstream analysis of blood.

Next steps include more research on the device in a broader range of people, including those with blood vessels that are even more difficult to access.

The lead author is Alvin Chen, who earned a doctorate at Rutgers. Co-authors include Max L. Balter and Timothy J. Maguire, who also earned doctorates at Rutgers, all under the supervision of Yarmush.

Source: Rutgers University

Published March 2020

Rate this article

[Rutgers-created robot uses artificial intelligence and imaging to draw blood, can 'steer' needle]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:

Copyright © 2020 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy